清华大学杨帆副教授讲座报告

科研楼18号楼1102

发布者:韩伟发布时间:2024-10-31浏览次数:111

报告题目:A random matrix model towards the quantum chaos transition conjecture

时       间:2024年11月12日(星期二)10:00

地       点:科研楼18号楼1102

主       办:数学与统计学院、分析数学及应用教育部重点实验室、福建省分析数学及应用重点实验室、福建省应用数学中心(福建师范大学)、福建师范大学数学研究中心

参加对象:概率统计系及其他感兴趣的师生

 

报告摘要: Consider $D$ random systems that are modeled by independent $N\times N$ complex Hermitian Wigner matrices. Suppose they are lying on a circle and the neighboring systems interact with each other through a deterministic matrix $A$. We prove that in the asymptotic limit $N\to \infty$, the whole system exhibits a quantum chaos transition when the interaction strength $\|A\|_{HS}$ varies. Specifically, when $\|A\|_{HS}\ge N^{\epsilon}$, we prove that the bulk eigenvalue statistics match those of a $DN\times DN$ GUE asymptotically and each bulk eigenvector is approximately equally distributed among the $D$ subsystems with probability $1-o(1)$. These phenomena indicate quantum chaos of the whole system. In contrast, when $\|A\|_{HS}\le N^{-\epsilon}$, we show that the system is integrable: the bulk eigenvalue statistics behave like $D$ independent copies of GUE statistics asymptotically and each bulk eigenvector is localized on only one subsystem. In particular, if we take $D\to \infty$ after the $N\to \infty$ limit, the bulk statistics converge to a Poisson point process under the $DN$ scaling. Based on joint work with Bertrand Stone and Jun Yin.

 

报告人简介: 杨帆现为清华大学丘成桐数学科学中心的副教授。于2009年本科毕业于清华大学,2014年获得香港中文大学物理学博士学位,2019年获得加利福尼亚大学洛杉矶分校的数学博士学位,2019年至2022年期间为宾夕法尼亚大学统计与数据科学系的博士后研究员。他的研究领域为概率和统计,主要关注随机矩阵理论及其在数学物理、高维统计、机器学习等领域内的应用。他有若干论文发表在数学和统计领域的顶级期刊上,如Annals of Statistics、Communications on Pure and Applied Mathematics、Annals of Probability、Probability Theory and Related Fields等。