报告题目:New minimal surfaces in the hyperbolic space
时 间:2022年6月16日(星期四)下午16:00-17:00
地 点:腾讯会议(ID:632-972-718)
主 办:数学与统计学院, 福建省分析数学及应用重点实验室、福建师范大学数学研究中心
参加对象:相关专业师生
报告摘要: We obtain some new complete minimal surfaces in the hyperbolic space , by using Ribaucour transformations. Starting with the family of spherical catenoids in found by Mori, we obtain 2 and 3-parameter families of new minimal surfaces in the hyperbolic space, by solving a non trivial integro-differential system. Special choices of the parameters provide minimal surfaces whose parametrizations are defined on connected regions of the plane minus a disjoint union of Jordan curves. Any connected region bounded by such a Jordan curve, generates a complete minimal surface, whose boundary at infinity of is a closed curve. This is a joint wok with Prof. K. Tenenblat.
报告人简介:崔宁伟,西南交通大学副教授,硕士生导师;研究方向为黎曼-芬斯勒几何和子流形相关几何;2010年博士毕业于浙江大学;2011-2013年在巴西利亚大学从事博士后研究;主持2项国家自然科学基金项目;在 Diff.Geom.Appl.,Inter.J.Math., J.Geom.Phys, Sci.China,Archiv der Math., Geom. Dedicata,Nonlinear Analysis, JMAA等国内外重要期刊上发表学术论文13篇。