厦门大学王中雷副教授学术报告

科研楼18号楼1102

发布者:韩伟发布时间:2024-05-29浏览次数:206

报告题目:Functional calibration under non-probability survey sampling

时      间:202467日(星期五)1000

地      点:科研楼18号楼1102 

主      办:数学与统计学院、分析数学及应用教育部重点实验室、福建省分析数学及应用重点实验室、统计学与人工智能福建省高校重点实验室、福建省应用数学中心(福建师范大学)

参加对象感兴趣的老师和研究生


报告摘要:Non-probability sampling is prevailing in survey sampling, but it leads to erroneous inference if its selection bias is overlooked. By integrating a non-probability sample and a probability sample, we propose a nonparametric method to adjust such selection bias through calibrating marginal means of functions in a reproducing kernel Hilbert space. Theoretical properties, including consistency and a limiting distribution, are established. Compared with existing ones, the proposed estimator is more robust since no parametric assumption is made for both regression and response models associated with the non-probability sample. Numerical experiments show that the proposed estimator outperforms its competitors. The proposed method is applied to the second-round economic census data in China as an empirical illustration. 

 

报告人简介:王中雷为美国爱荷华州立大学统计学博士,厦门大学经济学科副教授。多篇研究成果发表于Journal of the Royal Statistical Society Series B (Statistical Methodology)Journal of the American Statistical AssociationBiometrika以及Nature Communications等统计学和自然科学期刊。主持国家自然科学基金青年项目1项,参与国家重点研发计划、国家自然科学基金重点基金等。