报告题目:On the extinction-extinguishing dichotomy for stochastic Lotka–Volterra type populations(
时 间:2024年5月13日(星期一)14:30
地 点:腾讯会议:161649793
主 办:数学与统计学院、分析数学及应用教育部重点实验室、福建省分析数学及应用重点实验室、统计学与人工智能福建省高校重点实验室、福建省应用数学中心(福建师范大学)
参加对象:概率统计系及其他感兴趣的师生
报告摘要:Applying some criteria, we study a two-dimensional process (X, Y) arising as the unique nonnegative solution to a pair of stochastic differential equations driven by independent Brownian motions and compensated spectrally positive Lévy random measures. Both processes X and Y can be identified as continuous-state nonlinear branching processes and their evolution are negatively affected each other. We identify rather sharp conditions on the extinction behavior of (X, Y), respectively, one of the following behaviors: extinction with probability one, non-extinction with probability one or both extinction and non-extinction occurring with strictly positive probabilities. This talk is based on the paper of [SPA,150 (2022) 50–90] and a recent joint work with Jie Xiong and Xiaowen Zhou.
报告人简介: 杨叙,北方民族大学教授,2013年6月博士毕业于北京师范大学,主要从事分枝过程、随机微分方程和随机偏微分方程方面的研究工作。