福建师范大学115周年校庆系列学术报告 ——首都师范大学胥世成副教授学术报告

发布者:韩伟发布时间:2022-04-29浏览次数:349

报告题目:Gromov-Hausdorff precompactness of incomplete domains with lower bounded Ricci curvature

       间:202255日(星期四)下午1500

       点:腾讯会议(ID805-584-890 

       办:数学与统计学院, 福建省分析数学及应用重点实验室、福建师范大学数学研究中心

参加对象:相关专业师生 


报告摘要:Gromov's precompactness on bounded compact metric spaces in the Gromov-Hausdorff topology has been a basis of many branches in the modern differential geometry, which leads to many applications. By Bishop-Gromov's relative volume comparison, all complete manifolds with base points and lower bounded Ricci curvature forms a precompact family equivipped with the pointed Gromov-Hausdorff topology. However, it generally fails for incomplete domains with their length metrics, even if their Ricci curvature has a uniform lower bound. For example, the Riemannian universal covers of r-balls admit no precompactness. We provide a new principle for the precompactness of such domains in a natural way. In particular, there are normal universal covers of balls that have precompactness, which fit in many geometric applications.

 

报告人简介: 胥世成,首都师范大学副教授,主要从事几何分析方向研究,在J. Differential Geom.Adv. Math.Trans. Amer. Math. Soc.Int. Math. Res. Not.J. Geom. Anal.Commun. Contemp. Math.Proc. Amer. Math. Soc.等国际权威学术期刊发表学术论文10余篇,目前主持国家自然科学基金面上项目一项,完成青年基金一项。