报告题目:Tensor Elliptical Graphical Model
时 间:2026年 01月13日(星期一)10:00
地 点: 腾讯会议:618198904
主 办:数学与统计学院、分析数学及应用教育部重点实验室、福建省分析数学及应用重点实验室、福建省应用数学中心(福建师范大学)、福建师范大学数学研究中心
参加对象:感兴趣的老师和研究生
报告摘要:We address the problem of robust estimation of sparse high dimensional tensor elliptical graphical model. Most of the research focus on tensor graphical model under normality. To extend the tensor graphical model to more heavy-tailed scenarios, motivated by the fact that up to a constant, the spatial-sign covariance matrix can approximate the true covariance matrix when the dimension turns to infinity under tensor elliptical distribution, we propose a spatial-sign-based estimator to robustly estimate tensor elliptical graphical model, the rate of which matches the existing rate under normality for a wider family of distribution, i.e. elliptical distribution. We also conducted extensive simulations and real data applications to illustrate the practical utility of the proposed methods, especially under heavy-tailed distribution.
报告人简介:冯龙现任南开大学统计与数据科学学院教授、博士生导师。入选教育部青年人才计划、南开大学百名青年学科带头人。主要从事高维数据分析方面的研究,在统计学国际顶尖杂志JRSSB, JASA、Biometrika、Annals of Statistics、JOE、JBES等发表50余篇论文。主持一项天津市杰出青年基金、国家自然科学基金面上项目和青年项目。担任Statistical Theory and Related Field副主编。
