大连理工大学衣凤绮教授学术报告

发布者:韩伟发布时间:2021-07-01浏览次数:99

报告题目:Spatiotemporal patterns and bifurcations of a diffusive 3-component Field-Noyes system modeling Belousov-Zaikin-Zhabotinskii reaction

       间:2021-07-02 (星期五) 19:00 ~ 2021-07-02 (星期五) 21:00

       点:腾讯会议(会议号:611 832 815

       办:数学与统计学院福建省分析数学及应用重点实验室、福建省应用数学中心(福建师范大学)、福建师范大学数学研究中心

参加对象:感兴趣的老师和研究生

报告摘要:In this talk, I will report our recent works on the spatiotemporal patterns and bifurcations of a diffusive 3-component Field-Noyes system modeling Belousov-Zaikin-Zhabotinskii reaction. Firstly, we considered the global existence and boundedness of the in-time solutions of the system by using the technique of the invariant region; Then, we show the existence of the attraction region (cube or a single point), which attracts all the solutions of the system regardless of the initial values; Once the solutions are attracted in this region, rich dynamical behaviors of the system can be observed; Secondly, we studied the existence and Turing instability of the spatially homogeneous periodic solutions; To that end, in a general setting, we establish a formulae in terms of the diffusion rates (not necessarily limited to either larger diffusivity or smaller diffusivity) to determine Turing instability of the Hopf bifurcating periodic solutions for the general 3-component reaction-diffusion systems

 

报告人简介:衣凤绮,教授,现任职于大连理工大学数学科学学院,主要从事微分方程与动力系统的研究。2008年获哈尔滨工业大学基础数学专业博士学位。2009年博士学位论文获得“哈尔滨工业大学第十一届优秀博士学位论文”;2010-2011年在牛津大学Wolfson生物数学研究中心从事博士后研究;2010年博士学位论文获得“全国优秀博士学位论文提名论文”;2013年入选“教育部新世纪优秀人才支持计划”;2014年主持的科研项目获得“黑龙江省科学技术奖二等奖”。