黄宝华

发布者:韩伟发布时间:2020-08-04浏览次数:3106

个人简介:

黄宝华,女,19861月出生,福建泉州南安人,博士,硕士研究生导师。

 

联系方式:

电子邮箱:baohuahuang@126.combaohuahuang@fjnu.edu.cn

通讯地址:福建省福州市闽侯县福建师范大学旗山校区理工楼

 

研究兴趣:数据科学中的张量计算,矩阵方程数值解法,互补问题理论与数值解法,绝对值方程理论与数值解法等。

 

社会兼职:Applied Numerical Mathematics》、《Journal of the Franklin Institute》等期刊审稿人,美国数学评论评论员(编号:138972

 

教育及工作经历:

2021/07-至今,福建师范大学数学与统计学院,教师.  (入选福建师范大学“青年英才计划”)

2019/07-2021/06,华南师范大学,数学科学学院,博士后

2016/09-2019/06,福建师范大学,计算数学专业,博士

2008/09-2011/06,福建师范大学,基础数学专业,硕士

2004/09-2008/07,福建师范大学,数学与应用数学专业(师范),学士

 

科研项目:

1. 国家自然科学基金青年项目,12001211Sylvester张量方程的算法及在图像复原中的应用,2021/01-2023/1224万元,主持(在研)

2. 中国博士后科学基金面上一等资助, 2019M660203,张量方程的数值求解算法研究及其应用, 2019/09-2021/0612万元,主持(已结题

3. 国家自然科学基金面上项目,12171168,低秩张量最优化方法及其在交通数据处理中的应用,2022/01-2025/1251万元,参与(在研)

 

4. 国家自然科学基金面上项目,12071159,在数据科学中的张量分解及其非凸低秩逼近的理论与数值分析,2021/01-2024/1251万元,参与(在研)

5. 国家自然科学基金面上项目,61976053,量子非线性特征学习及应用研究,2020/01-2023/1256万元,参与(在研)

6. 广东省自然科学基金面上项目,2021A1515010368,随机规划的渐近分析和随机梯度算法,2021/01-2023/1210万元,参与(在研)

 

发表学术论文:

[1] Bao-Hua Huang, Wen Li. A modified SOR-like method for absolute value equations associated with second order cones. Journal of Computational and Applied Mathematics, 2022, 400: 113745.

[2] Bao-Hua Huang, Chang-Feng Ma. The iterative solution of a class of tensor equations via Einstein product with a tensor inequality constraint. Linear and Multilinear Algebra, 2021. DOI: https://doi.org/10.1080/03081087.2021.1954140

[3] Bao-Hua Huang. Numerical study on Moore-Penrose inverse of tensors via Einstein product. Numerical Algorithms, 2021, 87: 1767-1797.

[4] Bao-Hua Huang, Wen Li. Numerical subspace algorithms for solving the tensor equations involving Einstein product. Numerical Linear Algebra with Applications, 2021, 28: e2351.

[5] Bao-Hua Huang, Chang-Feng Ma. Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations. Applied Mathematics and Computation, 2020, 369: 124892.

[6] Bao-Hua Huang, Chang-Feng Ma. An iterative algorithm to solve the generalized Sylvester tensor equations. Linear and Multilinear Algebra, 2020, 68: 1175-1200.

[7] Bao-Hua Huang, Chang-Feng Ma. Some accelerated iterative algorithms for solving nonsymmetric algebraic Riccati equations arising in transport theory. International Journal of Computer Mathematics, 2020, 97: 1819-1839.

[8] Bao-Hua Huang, Ya-Jun Xie, Chang-Feng Ma. Krylov subspace methods to solve a class of tensor equations via the Einstein product. Numerical Linear Algebra with Applications, 2019, 26: e2254.

[9] Bao-Hua Huang, Chang-Feng Ma. The least squares solution of a class of generalized Sylvester-transpose matrix equations with the norm inequality constraint. Journal of Global Optimization, 2019, 73: 193-221.

[10] Bao-Hua Huang, Chang-Feng Ma. Convergent conditions of the generalized Newton method for absolute value equation over second order cones. Applied Mathematics Letters, 2019, 92: 151-157.

[11] Bao-Hua Huang, Chang-Feng Ma. Iterative criteria for identifying strong H-tensors. Journal of Computational and Applied Mathematics, 2019, 352: 93-109.

[12] Bao-Hua Huang, Chang-Feng Ma. Convergence analysis of the inexact Uzawa algorithm for nonlinear saddle point problems. Numerical Mathematics: Theory Methods and Applications, 2019, 12: 1093-1118.

[13] Bao-Hua Huang, Chang-Feng Ma. Finite iterative algorithm for the symmetric periodic least squares solutions of a class of periodic Sylvester matrix equations. Numerical Algorithms, 2019, 81: 377-406.

[14] Bao-Hua Huang, Chang-Feng Ma. A Shamanskii-like self-adaptive Levenberg-Marquardt method for nonlinear equations. Computers and Mathematics with Applications, 2019, 77: 357-373.

[15] Bao-Hua Huang, Chang-Feng Ma. The modulus-based Levenberg-Marquardt method for solving linear complementarity problem. Numerical Mathematics: Theory Methods and Applications, 2019, 12: 154-168.

[16] Bao-Hua Huang, Chang-Feng Ma. Some iterative algorithms for positive definite solution to nonlinear matrix equations. Journal of Applied Analysis and Computation, 2019, 9: 526-546.

[17] Bao-Hua Huang, Chang-Feng Ma. Some criteria for identifying strong H-tensors and its applications. Linear and Multilinear Algebra, 2019, 67: 1146-1173.

[18] Bao-Hua Huang, Chang-Feng Ma. Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. Numerical Algorithms, 2018, 79: 153-178.

[19] Bao-Hua Huang, Chang-Feng Ma. Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Computational and Applied Mathematics, 2018, 37: 3053-3076.

[20] Bao-Hua Huang, Chang-Feng Ma. An iterative algorithm for the least Frobenius norm Hermitian and generalized skew Hamiltonian solutions of the generalized coupled Sylvester-conjugate matrix equations. Numerical Algorithms, 2018, 78: 1271-1301.

[21] Bao-Hua Huang, Chang-Feng Ma. Extending GCR algorithm for the least squares solutions on a class of Sylvester matrix equations. Numerical Mathematics: Theory Methods and Applications, 2018, 11: 140-159.

[22] Bao-Hua Huang, Chang-Feng Ma. The relaxed gradient-based iterative algorithms for a class of generalized coupled Sylvester-conjugate matrix equations. Journal of the Franklin Institute, 2018, 355: 3168-3195.

[23] Bao-Hua Huang, Chang-Feng Ma. An iterative algorithm for the least Frobenius norm least squares solution of a class of generalized coupled Sylvester-transpose linear matrix equations. Applied Mathematics and Computation, 2018, 328: 58-74.

[24] Bao-Hua Huang, Chang-Feng Ma. Gradient-based iterative algorithms for generalized coupled Sylvester-conjugate matrix equations. Computers and Mathematics with Applications, 2018, 75: 2295-2310.

[25] Bao-Hua Huang, Chang-Feng Ma. Symmetric least squares solution of a class of Sylvester matrix equations via MINIRES algorithm. Journal of the Franklin Institute, 2017, 354: 6381-6404.

[26] Bao-Hua Huang, Chang-Feng Ma. On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations. Computers and Mathematics with Applications, 2017, 74: 532-555.