时 间:2023年6月21日(星期三)15:00-17:00
地 点:科研楼18号楼1102
主 办:数学与统计学院数学与统计学院、福建省分析数学及应用重点实验室、福建省应用数学中心(福建师范大学)、福建师范大学数学研究中心
参加对象:感兴趣的老师与研究生
报告摘要: I will discuss a proof of a conjecture of almost twenty years on the modular invariance of (logarithmic) intertwining operators. Let V be a C_2-cofinite vertex operator algebra without nonzero elements of negative weights. The conjecture states that the vector space spanned by pseudo-q-traces shifted by -c/24 of products of (logarithmic) intertwining operators among grading-restricted generalized V-modules is a module for the modular group SL(2, Z). In 2015, Fiordalisi proved that such pseudo-q-traces are absolutely convergent and have the genus-one associativity property and some other properties. Recently, I have proved this conjecture completely. This modular invariace result gives a construction of C_2-cofinite genus-one logarithmic conformal field theories. We expect that it will play an important role in the study of problems and conjectures on C_2-cofinite logarithmic conformal field theories.
报告人简介:黄一知,美国罗格斯大学(Rutgers University)教授。黄一知教授是国际上著名的顶点算子理论和理论物理学专家,主要研究兴趣是建立量子场理论的数学基础,及其在代数学,拓扑学,几何学,凝聚态物理和弦理论上的应用,他的代表性研究工作包括建立公理化的顶点算子代数的定义,顶点算子代数的张量范畴理论的研究,顶点算子代数框架下一般形式的Verlinde猜想的证明,并以此为基础证明了大量的重要定理等。黄一知教授出版学术专著一部,撰写和发表研究论文80余篇,多数发表在国际顶尖数学杂志上,如《Duke Mathematical Journal》,《Communications in Mathematical Physics》,《Transaction of the American Mathematical Society》等,他引次数超过1600次。黄一知教授还是国际知名数学杂志《Communications in Contemporary Mathematics》的主编,《New York Journal of Mathematics 》的编委等。