南开大学邹长亮教授学术报告

科研楼18号楼1102

发布者:韩伟发布时间:2025-10-10浏览次数:28

报告题目:Optimal Model Selection for Conformalized Robust Optimization                     

时      间:2025年10月15日(星期三)10:00

地      点:科研楼18号楼1102

主      办:数学与统计学院、分析数学及应用教育部重点实验室、统计学与人工智能福建省高校重点实验室

参加对象:感兴趣的老师和学生


报告摘要:In decision-making under uncertainty, Contextual Robust Optimization (CRO) provides reliability by minimizing the worst-case decision loss over a prediction set, hedging against label variability. While recent advances use conformal prediction to construct prediction sets for machine learning models, the downstream decisions critically depend on model selection. This paper introduces novel model selection frameworks for CRO that unify robustness control with decision risk minimization. We first propose Conformalized Robust Optimization with Model Selection (CROMS), which automatically selects models to approximately minimize the average decision risk in CRO solutions. We develop two algorithms: E-CROMS, which is computationally efficient, and F-CROMS, which enjoys a marginal robustness guarantee in finite samples. Further, we introduce Conformalized Robust Optimization with Individualized Model Selection (CROiMS), which performs individualized model selection by minimizing the conditional decision risk given the covariate of test data. This framework advances conformal prediction methodology by enabling covariate-aware model selection. Theoretically, CROiMS achieves asymptotic conditional robustness and decision efficiency under mild assumptions. Numerical results demonstrate significant improvements in decision efficiency and robustness across diverse synthetic and real-world applications, outperforming baseline approaches.


报告人简介:邹长亮,南开大学统计与数据科学学院教授。主要从事统计学及其与数据科学领域的交叉研究和实际应用。研究兴趣包括:预测性推断、高维数据统计学习、变点和异常点检测等。近年来在统计学和机器学习领域的权威期刊和会议上发表发表论文数十篇,入选爱思唯尔“中国高被引学者”。主持基金委优青、杰青、重点项目、重大项目课题和科技部重点研发计划课题等。任教育部科技委委员、全国应用统计专业硕士教学指导委员会委员、中国现场统计研究会副理事长等。