邓起荣 教 授 办公室 : 理工楼北楼406 联系电话 : 0591-22868101 E-mail: dengfractal@126.com 通讯地址: 福建省福州市大学城科技路1号福建师范大学旗山校区理工楼(350117) 社会兼职 :无 福建省数学会理事 无 研究兴趣 :分形几何 | 个人简介 男,1962年11月生,广西全州人,教授,博士生导师。 个人经历 2005年12月于香港中文大学获哲学博士学位,导师: 刘家成教授 1987年7月于云南大学获理学硕士学位,导师:王学仁教授 1984年7月于广西师范大学,数学专业,获理学学士学位 2017.2-2017.4 香港中文大学,数学系,访问学者 2016.2-2016.6 香港中文大学,数学系,访问学者 2014.2-2014.6 香港中文大学,数学系,访问学者
科研 (Research) 项目、 1. 2019. 1-2023. 12,迭代函数系、谱及相关理论研究(国家自然科学基金面上项目),主持 2. 2015. 1-2018. 12,迭代函数系的分离条件及其应用(国家自然科学基金面上项目), 主持 3. 2015.6-2018.3, 迭代函数系的图结构及分形集的性质(福建省自然科学基金面上项目),主持 4. 2016. 1-2018.12, 可数符号动力系统上的非正规数集的维数理论(国家自然科学基金青年项目),参与 5. 2011. 4-2014. 3, 迭代函数系的分离条件及其应用(福建省自然科学基金面上项目),主持 获奖、无 论著、 [1]. 邓起荣,李名田,Spectrality of Moran-Type Bernoulli Convolutions,Bull. Malays. Math. Sci. Soc. (2023) 46, No. 136。【Bulletin of the Malaysian Mathematical Sciences Society volume 46, Article number: 136 (2023) 】https://doi.org/10.1007/s40840-023-01532-z [2]. 邓起荣,姚永华,A note on Hata’s tree-like sets. Monatshefte für Mathematik (2023) 202: 103–118 【Monatsh Math 202, 103–118 (2023)】. https://doi.org/10.1007/s00605-023-01863-w [3]. 邓起荣,李名田,姚永华,On the connected components of IFS fractals,J. Math. Anal. Appl. 518 (2023), no. 2, Paper No. 126785。【Journal of Mathematical Analysis and Applications】https://doi.org/10.1016/j.jmaa.2022.126785 [4]. 曹永申,邓起荣,李名田,Spectra of Self-Similar Measures,Entropy,24(2022)no,8,Paper No. 1142,https://doi.org/10.3390/e24081142 [5]. 邓起荣,李名田,姚永华,Continuous dependence on parameters of self-affine sets and measures,Chaos, Solitons & Fractals,161(2022年8月),Paper No. 112309,https://doi.org/10.1016/j.chaos.2022.112309 [6]. 邓起荣,姚永华,On the group of isometries of planar IFS fractals,Nonlinearity,35 (2022), no. 1, 445-469,https://doi.org/10.1088/1361-6544/ac3924 [7]. 邓起荣,李思敏,SELF-AFFINE SETS: THE RELATION BETWEEN POSITIVE LEBESGUE MEASURE AND NON-EMPTY INTERIOR,Fractals, 20(2021)no. 6,Paper No. 2150160,https://doi.org/10.1142/S0218348X21501607 [8]. 邓起荣,李名田,Spectrality of Moran-type self-similar measures on R,J. Math. Anal. Appl. 506 (2022), no. 1, Paper No. 125547,https://doi.org/10.1016/j.jmaa.2021.125547 [9]. 邓起荣,陈建宝,Uniformity of spectral self-affine measures. Adv. Math. 380 (2021), Paper No. 107568, 17 pp. https://doi.org/10.1016/j.aim.2021.107568 [10].邓起荣, Dong, Xin-Han; Li, Ming-Tian Tree structure of spectra of spectral self-affine measures. J. Funct. Anal. 277 (2019), no. 3, 937–957。 https://doi.org/10.1016/j.jfa.2019.04.006 [11].邓起荣, Wang, Xiang-Yang,intersections of self-similar and self-affine sets with their perturbations under the weak separation condition. Ergod. Th. & Dynam. Sys. (2018), 38, 1353–1368,【Ergodic Theory and Dynamical Systems , Volume 38 , Issue 4 , June 2018 , pp. 1353 - 1368】https://doi.org/10.1017/etds.2016.96 [12]. 邓起荣,Lau, Ka-Sing,Structure of the class of iterated function systems that generate the same self-similar set. J. Fractal Geom. 4 (2017), 43-71, https://doi.org/10.4171/JFG/44 [13]. 邓起荣,On the spectra of Sierpinski-type self-affine measures. J. Funct. Anal. 270 (2016), no. 12, 4426–4442 ,https://doi.org/10.1016/j.jfa.2016.03.006 [14]. 邓起荣, Wang, Xiang-Yang,Denker-Sato type Markov chains and Harnack inequality. Nonlinearity 28 (2015), no. 11, 3973-399, https://doi.org/10.1088/0951-7715/28/11/3973 [15]. 邓起荣,Lau, Ka-Sing, Sierpinski-type spectral self-similar measures. J. Funct. Anal. 269 (2015),no. 5, 1310–1326,https://doi.org/10.1016/j.jfa.2015.06.013 [16]. 邓起荣; Ngai, Sze-Man, Dimensions of fractals generated by bi-Lipschitz maps. Abstr. Appl. Anal. 2014, Paper No. 549741, 12 pp, doi:10.1155/2014/549741 [17]. Ma, Yong; Dong, Xin-Han; 邓起荣,The connectedness of some two-dimensional self-affine sets. J. Math. Anal. Appl. 420 (2014), no. 2, 1604–1616,https://doi.org 10.1016/j.jmaa.2014.06.054 [18]. 邓起荣,Spectrality of one dimensional self-similar measures with consecutive digits. J. Math. Anal. Appl. 409 (2014), no. 1, 331–346,https://doi.org /10.1016/j.jmaa.2013.07.046 [19].邓起荣; Lau, Ka-Sing; Ngai, Sze-Man,Separation conditions for iterated function systems with overlaps. Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics, 1-20, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 2013,10.1090/conm/600/11928,https://doi.org 10.1090/conm/600/11928 [20].邓起荣, Lau, Ka-Sing, On the equivalence of homogeneous iterated function systems. Nonlinearity 26 (2013), no. 10, 2767–2775,https://doi.org/10.1088/0951-7715/26/10/2767 [21].邓起荣,Ngai, Sze-Man, Conformal iterated function systems with overlaps. Dyn. Syst. 26 (2011), no. 1, 103–123,https://doi.org/10.1080/14689367.2010.497478 [22].邓起荣,Ngai, Sze-Man, Multifractal formalism for self-affine measures with overlaps. Arch. Math. (Basel) 92 (2009), no. 6, 614–625,https://doi.org/10.1007/s00013-009-2969-9 [23]. 邓起荣,Reverse iterated function system and dimension of discrete fractals. Bull. Aust. Math. Soc. 79 (2009),no. 1, 37–47,https://doi.org/10.1017/S000497270800097X [24].邓起荣,Harding, John; Hu, Tian-You, Hausdorff dimension of self-similar sets with overlaps. Sci. China Ser. A 52 (2009), no. 1, 119–128,https://doi.org/10.1016/j.amc.2015.04.059 [25].邓起荣,Absolute continuity of vector-valued self-affine measures. J. Math. Anal. Appl. 342(2008),no. 2, 1250–1264,https://doi.org/10.1016/j.jmaa.2007.12.041 [26].邓起荣, He, Xing-Gang; Lau, Ka-Sing, Self-affine measures and vector-valued representations. Studia Math. 188 (2008), no. 3, 259–286,https://doi.org/10.4064/sm188-3-3 [27].邓起荣, Lau, Ka-Sing, Open set condition and post-critically finite self-similar sets. Nonlinearity 21 (2008), no. 6, 1227–1232,https://doi.org/10.1088/0951-7715/21/6/004
教学(Teaching) (按照 研究生、本科生、教学获奖顺序) 近5年讲授的课程 硕士研究生和博士研究生:《分形几何基础》 本科课程:《概率论与数理统计》,《试验设计》 |