邓起荣

发布者:系统管理员发布时间:2018-12-23浏览次数:7001

邓起荣

    

办公室   理工楼北楼406

联系电话 0591-22868101

E-maildengfractal@126.com

通讯地址: 福建省福州市大学城科技路1号福建师范大学旗山校区理工楼(350117)           

社会兼职 :无

福建省数学会理事 无

研究兴趣  :分形几何


个人简介 

男,196211月生,广西全州人,教授,博士生导师。

个人经历 

200512月于香港中文大学获哲学博士学位,导师: 刘家成教授

19877月于云南大学获理学硕士学位,导师:王学仁教授

19847月于广西师范大学,数学专业,获理学学士学位

2017.2-2017.4  香港中文大学,数学系,访问学者

2016.2-2016.6  香港中文大学,数学系,访问学者

2014.2-2014.6  香港中文大学,数学系,访问学者

 

科研 (Research

项目、

1. 2019. 1-2023. 12,迭代函数系、谱及相关理论研究(国家自然科学基金面上项目),主持

2. 2015. 1-2018. 12,迭代函数系的分离条件及其应用(国家自然科学基金面上项目), 主持   

3. 2015.6-2018.3, 迭代函数系的图结构及分形集的性质(福建省自然科学基金面上项目),主持

4. 2016. 1-2018.12, 可数符号动力系统上的非正规数集的维数理论(国家自然科学基金青年项目),参与

5. 2011. 4-2014. 3, 迭代函数系的分离条件及其应用(福建省自然科学基金面上项目),主持

获奖、无

论著、

[1]. 邓起荣,李名田,Spectrality of Moran-Type Bernoulli ConvolutionsBull. Malays. Math. Sci. Soc. (2023) 46 No. 136。【Bulletin of the Malaysian Mathematical Sciences Society volume 46, Article number: 136 (2023) https://doi.org/10.1007/s40840-023-01532-z

[2]. 邓起荣,姚永华,A note on Hata’s tree-like sets. Monatshefte für Mathematik (2023) 202: 103–118 Monatsh Math 202, 103–118 (2023)https://doi.org/10.1007/s00605-023-01863-w

[3]. 邓起荣,李名田,姚永华,On the connected components of IFS fractalsJ. Math. Anal. Appl. 518 (2023), no. 2, Paper No. 126785。【Journal of Mathematical Analysis and Applicationshttps://doi.org/10.1016/j.jmaa.2022.126785

[4]. 曹永申,邓起荣,李名田,Spectra of Self-Similar MeasuresEntropy242022no8Paper No. 1142https://doi.org/10.3390/e24081142

[5]. 邓起荣,李名田,姚永华,Continuous dependence on parameters of self-affine sets and measuresChaos, Solitons & Fractals16120228月),Paper No.  112309https://doi.org/10.1016/j.chaos.2022.112309 

[6]. 邓起荣,姚永华,On the group of isometries of planar IFS fractalsNonlinearity35 (2022), no. 1, 445-469https://doi.org/10.1088/1361-6544/ac3924

[7]. 邓起荣,李思敏,SELF-AFFINE SETS: THE RELATION BETWEEN POSITIVE LEBESGUE MEASURE AND NON-EMPTY INTERIORFractals, 202021no. 6Paper No. 2150160https://doi.org/10.1142/S0218348X21501607

[8]. 邓起荣,李名田,Spectrality of Moran-type self-similar measures on RJ. Math. Anal. Appl.  506 (2022) no. 1, Paper No.  125547https://doi.org/10.1016/j.jmaa.2021.125547

[9]. 邓起荣,陈建宝,Uniformity of spectral self-affine measures. Adv. Math. 380 (2021),  Paper No. 107568, 17 pp. https://doi.org/10.1016/j.aim.2021.107568

[10].邓起荣Dong, Xin-HanLi, Ming-Tian Tree structure of spectra of spectral self-affine measures. J. Funct. Anal. 277 (2019), no. 3, 937–957https://doi.org/10.1016/j.jfa.2019.04.006 

[11].邓起荣, Wang, Xiang-Yangintersections of self-similar and self-affine sets with their perturbations under the weak separation condition. Ergod. Th. & Dynam. Sys. (2018), 38, 1353–1368,【Ergodic Theory and Dynamical Systems Volume 38 Issue 4 , June 2018 , pp. 1353 - 1368https://doi.org/10.1017/etds.2016.96

[12]. 邓起荣,Lau, Ka-SingStructure of the class of iterated function systems that generate the same self-similar set. J. Fractal Geom. 4 (2017), 43-71

https://doi.org/10.4171/JFG/44

[13]. 邓起荣,On the spectra of Sierpinski-type self-affine measures. J. Funct. Anal. 270 (2016), no. 12, 4426–4442 https://doi.org/10.1016/j.jfa.2016.03.006

[14]. 邓起荣, Wang, Xiang-YangDenker-Sato type Markov chains and Harnack inequality. Nonlinearity 28 (2015), no. 11, 3973-399, https://doi.org/10.1088/0951-7715/28/11/3973

[15]. 邓起荣,Lau, Ka-Sing Sierpinski-type spectral self-similar measures. J. Funct. Anal. 269 (2015)no. 5, 13101326https://doi.org/10.1016/j.jfa.2015.06.013

[16]. 邓起荣Ngai, Sze-Man Dimensions of fractals generated by bi-Lipschitz maps. Abstr. Appl. Anal. 2014,  Paper No. 549741, 12 pp, doi:10.1155/2014/549741

[17]. Ma, Yong; Dong, Xin-Han; 邓起荣,The connectedness of some two-dimensional self-affine sets. J. Math. Anal. Appl.  420  (2014),  no. 2, 16041616https://doi.org 10.1016/j.jmaa.2014.06.054

[18]. 邓起荣,Spectrality of one dimensional self-similar measures with consecutive digits. J. Math. Anal. Appl.  409 (2014),  no. 1, 331–346https://doi.org /10.1016/j.jmaa.2013.07.046

[19].邓起荣; Lau, Ka-Sing; Ngai, Sze-ManSeparation conditions for iterated function systems with overlaps.  Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics, 1-20, Contemp. Math., 600, Amer. Math. Soc., Providence, RI, 201310.1090/conm/600/11928https://doi.org 10.1090/conm/600/11928

[20].邓起荣, Lau, Ka-Sing, On the equivalence of homogeneous iterated function systems. Nonlinearity  26  (2013),  no. 10, 27672775https://doi.org/10.1088/0951-7715/26/10/2767

[21].邓起荣,Ngai, Sze-Man, Conformal iterated function systems with overlaps. Dyn. Syst.  26  (2011),  no. 1, 103123https://doi.org/10.1080/14689367.2010.497478

[22].邓起荣,Ngai, Sze-Man, Multifractal formalism for self-affine measures with overlaps. Arch. Math. (Basel)  92 (2009),  no. 6, 614625https://doi.org/10.1007/s00013-009-2969-9

[23]. 邓起荣,Reverse iterated function system and dimension of discrete fractals. Bull. Aust. Math. Soc.  79 (2009)no. 1, 3747https://doi.org/10.1017/S000497270800097X

[24].邓起荣,Harding, John; Hu, Tian-You, Hausdorff dimension of self-similar sets with overlaps. Sci. China Ser. A  52 (2009),  no. 1, 119128https://doi.org/10.1016/j.amc.2015.04.059

[25].邓起荣,Absolute continuity of vector-valued self-affine measures. J. Math. Anal. Appl.  342(2008)no. 2, 12501264https://doi.org/10.1016/j.jmaa.2007.12.041

[26].邓起荣, He, Xing-Gang; Lau, Ka-Sing, Self-affine measures and vector-valued representations. Studia Math.  188 (2008),  no. 3, 259286https://doi.org/10.4064/sm188-3-3

[27].邓起荣, Lau, Ka-Sing, Open set condition and post-critically finite self-similar sets. Nonlinearity  21 (2008),  no. 6, 12271232https://doi.org/10.1088/0951-7715/21/6/004

 

教学(Teaching

(按照 研究生、本科生、教学获奖顺序)

5年讲授的课程

硕士研究生和博士研究生:《分形几何基础》

本科课程:《概率论与数理统计》,《试验设计》