柯品惠

发布者:梁克龙发布时间:2015-08-24浏览次数:9856

柯品惠(keph@fjnu.edu.cn)

个人简介: ,  19789月生, 福建建阳人,  教授,  博导,  福建师范大学数学与统计学院,  中国密码学会会员,  福建省教育学会数学教学委员会常务理事、副秘书长.

教育经历:

1. 2003.09-2006.07 北京邮电大学, 密码学专业, 博士;

2. 2000.09-2003.07 福建师范大学, 基础数学专业, 硕士;

3. 1996.09-2000.07 福建师范大学, 数学教育专业, 本科.

工作经历:

1. 2003.07-现在,  福建师范大学数学与统计学院(原福建师范大学数学与信息学院、福建师范大学数学与计算机科学学院);

2. 2010.07-2010.12,  2019.01-2019.02,  新加坡南洋理工大学CCRG访问.

研究方向:  代数编码与密码.  

学术期刊审稿人:

1. IEEE Tran. on Information Theory, IEEE Tran. on Signal Processing, Design Codes and Cryptography, Information Sciences, Journal of Electronics (China), IEICE Trans. on Fund. , Journal of Computational and Applied Mathematical,  Trans. on Combin., Applicable Algebra in Engineering, Communication and Computing(AAECC) , Advances in Mathematics of Communications (AMC),  中国科学, 电子学报, 通信学报, 工程数学学报, 电子与信息学报等;

2. 数学评论(Mathematical Reviews)评论员(2014- 至今)

在研项目:

1. “伪随机序列的扩展复杂度分析及其构造研究” ,  福建省自然科学基金(2019J01273,  2019.04-2022.04,  主持.

2.同态数字签名的理论与设计”, 福建省自然科学基金重点项目(2020J02016),2020.01-2023.11, 参与,排名第三(项目负责人:黄欣沂教授).

已结题项目:

1. “De Bruijn序列的构造、性能分析和应用”, 国家自然科学基金(61772476, 2018.01-2021.12, 参与, 排名第二(项目负责人:郑州大学常祖领教授);

2. “Walsh-Hadamard变换相关的新变换:理论、方法及密码学应用”, 国家自然科学基金(61772292, 2018.01-2021.12, 参与, 排名第三(项目负责人:莆田学院陈智雄教授);

3. “几类具有优相关性质的离散信号的设计与分析”, 国家自然科学基金(61102093, 2012.01-2014.12,  项目负责人;

4.  “两类新型最佳离散信号的设计与分析 ”, 福建省自然科学基金(2015J01237, 2015-2018, 项目负责人;

5. “最佳离散信号设计中若干问题的研究”, 福建省自然科学基金(2010J01319, 2010.06-2013.07,  项目负责人;

6. 福建省高校服务海西建设重点项目-基于数学的信息化技术研究子课题, 2010.01-2012.10, 项目负责人;

7.“具有高非线性度的布尔函数的研究”, 福建省科技厅专项(2006F3044, 2006.10-2008.12, 项目负责人.

教学:

1. 本科:现代密码学, 信息与编码, 线性代数, 离散数学, 高等数学, 概率论与数理统计, 信息安全概论、信息安全数学基础;

2. 研究生:Finite Fields,  Sequence design,  Modern Cryptography.

论文著作:

[83] Linyan Yu,  Pinhui Ke,  Zuling Chang.  New family of polyphase sequences with low correlation from Galois rings,  IEICE Trans. on Fundamentals,  E105-A(10),  2022..

[82] Jian Ding,  Pinhui Ke,  Huaxiong Wang,  Changlu Lin.  Ramp scheme based on CRT for polynomial ring over finite field,  Journal of System Science and Complexity,  accepted,  2022.

[81]Pinhui Ke,  Panpan Qiao,  Yang Yang.  On the equivalence of several classes of quaternary sequences with optimal autocorrelation and length 2p,  Advances in Mathematics of Communications,  16(2): 285-302,  2022.

[80] Jian Ding,  Pinhui Ke,  Huaxiong Wang,  Changlu Lin.  Bivariate polynomial-based secret sharing schemes with secure secret reconstruction,  Information Sciences,  593: 398-414, 2022.

[79]Zhiyao Yang,  Pinhui Ke*,  Zhixiong Chen.  Characterization and construction of generalized bent functions with flexible coefficients,  IEICE Trans. on Fundamentals,  E105-A(5),  2022.

[78] Zhiyao Yang,  Pinhui Ke*,  Zhixiong Chen.  New secondary constructions of generalized bent functions, Chinese Journal of Electronics,30(6): 1022-1029, 2021.

[77]余林燕, 柯品惠.  一类周期为pq^2r元序列线性复杂度研究, 福建师范大学学报(自然科学版), 37(4):1-7, 2021.

[76]柯品惠, 卢栎羽, 陈智雄. 一类周期为 2p^{2}的二元序列的2-adic复杂度, 密码学报, 8(4):560-571, 2021.

[75]Pinhui Ke, Yan Zhong, Shengyuan Zhang.  Linear Complexity of a New Class of Quaternary Generalized Cyclotomic Sequence with Period 2p^m,  Complexity, 6538970, 7 pages,  2020.

[74] 卢栎羽, 柯品惠. 一类具有优自相关性质的二元序列的2-adic复杂度研究, 数学杂志,  40(1): 110-118,  2020.

[73] 仲燕, 张胜元, 柯品惠. 一类新的周期为2p^m的四元广义分圆序列的线性复杂度研究, 福建师范大学学报(自然科学版),  36(1)7-11,  2020.

[72] Zhifang Ye,  Pinhui Ke*,  Chenghuang Wu.  A further study of the linear complexity of new binary cyclotomic sequence of length p^r, Applicable Algebra in Engineering, Communication and Computing,  30: 217-231,  2019.

[71] Zhifang Ye,  Pinhui Ke*,  Zhixiong Chen.  Linear Complexity of d-ary Sequence Derived from Euler Quotients over GF(q), Chinese Journal of Electronics,  28(3):529-534,  2019.

[70] Chenhuang Wu,  Chunxiang Xu,  Zhixiong Chen,  Pinhui Ke. On error linear complexity of new generalized cyclotomic binary sequences of period p^2,  Information Processing Letters,  144:9-15,  2019.

[69] Zhengqian Li,  Pinhui Ke*,  Shengyuan Zhang.  New Classes of Generalized Zero-Difference Balanced Functions and Their Applications,  Journal of the Chinese Institute of Engineers,  42(1): 2-9,  2019.

[68] Pinhui Ke,  Yueqin Jiang,  Zhixiong Chen.  On the Linear Complexities of Two Classes of Quaternary Sequences of Even Length With Optimal Autocorrelation,  Advances in Mathematics of Communications,  12(3)525–539, 2018.

[67] Pinhui Ke,  Zhifan Ye,  Shengyuan Zhang,  Zuling Chang.  On the cross-correlation distribution of d-ary generalized Legendre-Sidelnikov sequences,  Chinese Journal of Electronics,  27(2):287-291,  2018.

[66] 柯品惠,  胡电芬,  常祖领. 周期为p^2的完备高斯整数序列的新构造,  工程数学学报,  35(3): 319-328, 2018.

[65] Qi Ye,  Pinhui Ke*,  Jian Shen.  Linear Complexity of a Class of Pseudorandom Sequences Over a General Finite Field, Soft Computing, 22:4335-4346, 2018.

[64] Zhixiong Chen,  Vladimir Edemskiy,  Pinhui Ke and Chenhuang Wu.  On k-error linear complexity of pseudorandom binary sequences derived from Euler quotients,  Advances in Mathematics of Communications,  12(4): 805-816,  2018.

[63] Zhibao Lin,  Zhengqian Li,  Pinhui Ke*.  New Constructions of Zero-Difference Balanced Functions, IEICE Trans. on Fundamentals, E101-A(10):1719-1723, 2018.

[62] Pinhui Ke,  Zhifan Ye,  Zhengchun Zhou,  Jian Shen.  Autocorrelation of the Modified Binary Two-prime Sidelnikov Sequence, International Journal of Foundations of Computer Science, 28(4):391-409,  2017.

[61] Zhengqian Li,  Pinhui Ke*,  Zhifan Ye.  New Construction of Low-hit-zone Frequency Hopping Sequence Sets with Optimal Partial Hamming Correlation,  The 3rd International Conference on Cloud Computing and Security,  LNCS 10603,  PartII,  2017.

[60] Zuling Chang,  Pinhui Ke,  Y Zhao.  Some enumeration results on binary 2n-periodic sequences,  International Journal of Foundations of Computer Science,  28(2): 171–184,  2017.

[59] Chunguan Ma,  Lei Zhang,  Songtao Yang,  Xiaodong Zheng,  Pinhui Ke.  Achieve personalized anonymity through query bolocks exchanging, China Communications,   13(11):106-118, 2016.

[58]柯品惠,  叶智钒,  常祖领. 一类推广的Legendre-Sidelnikov序列的自相关分布,  电子与信息学报,  Vol. 38 (2): 303-309, 2016.

[57]Zhifan Ye,  Pinhui Ke,  Shengyuan Zhang,  Zuling Chang.  Zero-defference function derived from Fermat Quotients and Its Applications. IEICE Trans. on Fundamentals,  Vol.E98-A,  No.11 2015.  

[56]Zhifan Ye, Pinhui Ke,  Shengyuan Zhang,  Zuling Chang.  Some Notes on Pseudorandom Binary Sequences Derived from Fermat-Euler Quotients, IEICE Trans. on Fundamentals, E98-A(10),  2015.

[55]Pinhui Ke,  Zhengchun Zhou.  A Generic Construction of Z-Periodic Complementary Sequence Sets with Flexible Flock Size and Zero Correlation Zone Length,  IEEE Signal Processing Letters,  22(9):1462-1466, 2015.

[54]Zuling Chang,  Pinhui Ke.  On the Error Linear Complexity Spectrum of Binary 2^n-periodic Sequences, Chinese Journal of Electronics,  24(2): 366-372, 2015.

[53]柯品惠, 李瑞芳, 张胜元. 一类新的周期为p^{m+1}q^{n+1}的二元广义分圆序列的线性复杂度, 电子学报,  42 (5): 1009-1013,  2014.

[52]常祖领, 周玉倩, 柯品惠.  一类新的pqr2阶广义分圆序列的线性复杂度, 电子学报,  43 (1): 166-170,  2015.

[50]Ke Pin-hui, Lin Chang-Lu, Zhang Sheng-Yuan.  Linear complexity of quaternary sequences with odd period and low autocorrelation, Journal of China Universities of Posts and Telecommunications,  21(5): 89-93,  2014.

[50]Lin Changlu,  Tang Fei,  Ke Pinhui,  Harn Lein,  Zhang Shengyuan.  Secure universal designated verifier identity-based signcryption,  Security and Communication Networks, 7(2): 434-444,  2014.

[49]柯品惠, 陈浩源.  汉明相关值可灵活设定的无碰撞区跳频序列集的构造研究, 北京邮电大学学报,  37(2), 38-42,  2014.

[48]余望鸿,  柯品惠. 基于正交矩阵偶构造低相关区序列偶集,  福建师范大学学报(自然科学版),  30(2):7-12,  2014.

[47]余望鸿,  柯品惠. 四元低相关区序列偶集的构造研究,  武夷学院学报,  32(5):40-45,  2014.

[46]李瑞芳,  柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度, 电子与信息学报,  36 (3): 650-654,  2014.

[45]Pinhui Ke,  Wanghong Yu,  Zuling Chang.  A Note on Binary Sequence Pairs With Two-level Correlation, Information Processing letters,  113: 811-814,  2013.

[44]陈浩源, 柯品惠, 张胜元. 基于矩阵置换的最优无碰撞区跳频序列集的构造研究, 计算机应用, 33(11):3028-3031, 2013.

[43] Fei Tang,  Changlu Lin,  Pinhui Ke.  Universal Designated Verifier Signcryption , Network and System Security(NSS 2012),  L. Xu,  E. Bertino,  and Y. Mu (Eds.),  LNCS 7645: 126–134,  2012.

[42]Shengyuan Zhang,  Fei Tang,  Changlu Lin,  Pinhui Ke.  Provably secure self-certified signature schemes with message recovery, China Communications, 9(10):112-119,  2012.

[41]林志宝, 柯品惠. 关于一类四元分圆序列的注记, 福建师范大学学报(自然科学版),  2012, 28(4):10-13.

[40]柯品惠, 李瑞芳, 张胜元.  d-元广义分圆序列的线性复杂度及自相关函数性质分析, 电子与信息学报,  34 (12): 2881-2884,  2012.

[39]Pinhui Ke, Shengyuan Zhang.  New classes of sequence families with low correlation by using multiplicative and additive characters.Frontiers of Electrical and Electronic Engineering, 7(3): 308-311,  2012.

[38]Pinhui Ke,  Shengyuan Zhang.  New Classes of Quaternary Cyclotomic Sequence of Length 2p^m With High Linear Complexity, Information Processing Letters,  12(16): 646-650,  2012.

[37]Pinhui Ke,  Shengyuan Zhang,  Fuchun Lin.  Constructions of Binary Array Set with Zero-Correlation Zone,  Information Sciences,  197:197-206,  2012.
 [36]Pinhui Ke,  Jie Zhang,  Shengyuan Zhang.  On the Linear Complexity and the Autocorrelation of Generalized Cyclotomic Binary Sequences of Length 2p^m,   Designs, Codes and Cryptography,  67(3): 325-339,  2013.

[35]柯品惠, 章海辉, 张胜元. 一类新的具有最优平均汉明相关性的跳频序列族, 通信学报,  9:168-175,  2012.

[34]Pinhui Ke,  Zheng Yang,  Jie Zhang.  On the Autocorrelation and Linear Complexity of Some 2p Periodic Quaternary Cyclotomic Sequences over F4,  IEICE Trans. on Fundamentals, E94-A(11):2472-2477,  2011.

[33]柯品惠,  张胜元.  ZCZ阵列偶集的递归构造研究, 电子与信息学报,  33 (5): 1257-1260,  2011.

[32]Pinhui Ke,  Zhihua Wang,  Zheng Yang.  New Constructions of Frequency-Hopping Sequences from Power-Residue Sequences, IEICE Trans. on Fundamentals, E94-A(3):1029-1033, 2011.

[31]杨正,  柯品惠, 张胜元.  Mpg长的序列集的新构造, 福建师范大学学报(自然科学版), 26(5): 20-26,  2010.

[30]章海辉,  柯品惠,  张胜元,  基于分圆类方法的差集偶构造的进一步研究, 福建师范大学学报(自然科学版), 26(5): 11-15,  2010.

[29]王志华, 柯品惠, 张胜元,  ZCZ序列偶集的构造研究, 福建师范大学学报(自然科学版), 26(5):16-19,  2010.

[28]Pinhui Ke,  Fuchun Lin.  New Constructions of Binary Sequences With Optimal Autocorrelation Value, Electronics Letters, 46(20):1381–1382, 2010.

[27]Zheng Yang,  Pinhui Ke.  On Generalized Cyclotomic Sequence of Order d and Period pq, IEICE Trans. on Fundamentals, E94-A(1):443-447, 2011.

[26]Zheng Yang,  Pinhui Ke.  Quaternary Sequences with Odd Period and Low Autocorrelation, Electronics Letters, 46(15):1068–1069, 2010.

[25]Zheng Yang,  Pinhui Ke.  Construction of Quaternary Sequences of Length pq with Low Autocorrelation, Cryptography and Communications- Discrete Structures, Boolean Functions and Sequences, 3(2):1-5, 2011.

[24]章海辉, 王志华, 柯品惠. 基于广义分圆类的差集偶的新构造, 武夷学院学报,  2010.

[23]柯品惠, 王志华, 张胜元. 基于交织方法的ZCZ阵列偶集的构造研究, 电子与信息学报,  32 (12): 3037-3040,  2010.

[22]KE Pin-hui,  ZHANG Sheng-yuan.  Frequency-Hopping Sequences Based on d-form Functions, The Journal of China University of Posts and Telecommunications,  17(4): 58-62,  2010.

[21]Pinhui Ke, Shengyuan Zhang.  New Classes of Binary Array Set with Zero-correlation Zone,  CMC2010: 50-55,  2010.

[20]黄柳玲, 柯品惠, 张胜元. GF(p)上的轮换对称布尔函数, 福建师范大学学报(自然科学版),  25(3): 5-9,  2009.

[19]张云, 柯品惠, 张胜元.基于分圆类的最优跳频序列族, 福建师范大学学报(自然科学版),  25(2):1-5,  2009.

[18]Yun Zhang, Pinhui Ke,  Shengyuan Zhang,  Optimal Hopping-Frequency Sequence based on Cyclotomy,  First International Workshop on Education Technology and Computer Science (ETCS 2009), 1:1122-1126,  2009.

[17]李建周, 柯品惠, 张胜元.基于分圆类方法的差集偶构造, 福建师范大学学报(自然科学版), 25(4): 1-4,  2009.

[16]Pinhui Ke, Liuling Huang,  Shengyuan Zhang.  Improved lower bound on the number of balanced symmetric functions over GF(p) , Information Sciences,  179: 682-687,  2009.

[15]Fuchu Lin, Pinhui Ke, Shengyuan Zhang.  A Note on Interleaving Construction for LCZ and ZCZ Sequence Sets, The IET 2ndICWMMN2008:  208-210,  2008.

[14]Ke Pin-hui,  Zhang Sheng-yuan.  Constructions of vector output Boolean functions with high generalized nonlinearity, The Journal of China University of Posts and Telecommunications, 15(2):77-81, 2008.

[13]常祖领, 柯品惠, 张劼, 温巧燕. 高非线性度多输出布尔函数的构造.电子学报,  1: 141-145,  2008.

[12]李建周, 柯品惠.几乎差集偶与几乎自相关二元序列偶的研究, 武夷学院学报,  27(2):10-14,  2008.

[11]柯品惠, 张劼, 温巧燕.  Bent序列簇的迹表示的进一步的研究, 通信学报,  28(5)118-121,  2007.

[10]柯品惠, 常祖领, 温巧燕.  Bent互补函数族的构造及推广. 工程数学学报,  24(2)377-380,  2007.

[9]常祖领, 柯品惠,  , 温巧燕. Bent函数的性质和构造, 北京邮电大学学报,  29 (3): 36-39,  2006.

[8]常祖领, 柯品惠, 莫骄, 温巧燕.  F_2^n上的正形置换,  北京邮电大学学报,  29(1):115-118,  2006.

[7]常祖领, 柯品惠, 张劼, 温巧燕. 广义二元Bent序列的性质, 北京邮电大学学报,  28:10-13,  2005.

[6]柯品惠, 常祖领, 温巧燕. GF(q)上的广义bent函数和完全非线性函数, 北京邮电大学学报,  29(3):110-113,  2006.

[5]柯品惠, 刘太琳, 温凤桐, 温巧燕.有限域上多值逻辑函数的频谱研究, 北京邮电大学学报,  29(1):43-47,  2006.

[4]Pinhui Ke,  Jie Zhang,  Qiaoyan Wen.  Results on almost resilient functions.  Applied Cryptography and Network Security: 4th International Conference,  ACNS 2006,  J.Zhou, M.Yung and F.Bao(eds.), Springer-Verlag,  LNCS 3989:421-432,  2006.

[3]Pin-Hui Ke,  Tai-Lin Liu,  Qiao-Yan Wen.  Construction of almost resilient functions.  Cryptology and Network Security: 4th International Conference,  CANS 2005,  Yvo G. Desmedt et al. (eds.), Springer-Verlag ,  LNCS 3810: 236-246,  2005.

[2]柯品惠, 常祖领, 温巧燕. 广义bent序列的构造.通信学报,  26(12):19-23,  2005.  (该文被Front. Electr. Electron. Eng. China (2006)1 : 1–7全文摘录).

[1]柯品惠, 常祖领, 温巧燕. 有限域上多值逻辑函数的线性结构及退化性.福建师范大学学报(自然科学版),  21(2):1-4,  2005.

指导研究生:

硕士:余林燕 (2019),赵晨阳(2020级);

博士:杨志耀 (2020).

已毕业

2018级:乔盼盼(现就职“西安市浐灞第七初级中学”)

2017级:仲燕(与张胜元教授合作指导, 现就职“华中师范大学附属息县高级中学”), 卢栎羽(现就职“广东南雄中学”).

2015:

江月琴(获2018年校优秀硕士研究生毕业论文,  现就职“闽侯八中”),

李正谦(获2018年校优秀硕士研究生毕业论文, 现就职“泉州石狮一中”);

·         2013:

叶智钒(获2015年国家优秀研究生奖学金, 现西南交大读博),

胡电芬(现就职“福建非常同步教育科技有限公司”);

·         2011

陈浩源(现就职“福建师范大学福清分校”),

余望鸿(现就职“厦门双十中学漳州校区”),

李瑞芳(获2014年校优秀硕士研究生毕业论文一等奖,  现就职“厦门市鹭江新城小学”);

·         2008

杨正(获2011年校优秀硕士研究生毕业论文一等奖,  西南交大博士毕业, 现为福建师范大学物光学院副教授),

章海辉(现就职“厦门大学附属中学”),

王志华(现就职“大同市馨茂中学”).