陈正新 教 授 办公室 : 理工楼北楼412 E-mail:czxing@163.com 通讯地址: 福建省福州市大学城科技路1号福建师范大学旗山校区理工楼(350117) 研究兴趣:有限维结合代数的表示、李代数的结构与表示 | 个人简介 男,1976年5月生, 湖北蕲春人,博士,教授,博士生导师。
工作经历: 2021/07- 至今,福建师范大学,数学与统计学院,教授 2017/07-2021/06,福建师范大学,数学与信息学院,教授 2014/01-2017/06,福建师范大学,数学与计算机科学学院,教授 2008/09-2013/12, 福建师范大学,数学与计算机科学学院,副教授 2005/09-2008/08, 福建师范大学,数学与计算机科学学院,讲师 1996/08-1999/08, 湖北省蕲春县第三高中,数学教师
教育经历: 2002-9 至 2005-6在厦门大学攻读基础数学专业博士研究生,获理学博士学位 1999-09 至 2002-06在安徽大学攻读基础数学专业硕士研究生,获理学硕士学位
教学: 主讲过的本科生课程:高等代数、近世代数、寿险精算、高等数学、线性代数 主讲过的研究生课程:代数学、同调代数、有限维结合代数的表示、有限维单李代数、三角范畴与导出范畴、倾斜理论、代数拓扑 指导研究生情况:自2009年9月起开始招收硕士研究生,已毕业学术类硕士研究生9名,专业类硕士生4名,现有在读学术硕士生2名。自2018年9月起开始招收博士研究生,已毕业博士研究生1名,现有在读博士研究生1名。
科研项目: 1. 利用Ringel-Hall 代数实现和研究若干李代数的结构, 国家自然科学基金面上项目(11871014),53万元, 主持人, 2019.01.01-2022.12.31. 2、代数表示理论与李代数之间联系的若干研究,国家自然科学基金青年项目(11101084),23万元, 主持人, 2012.01.01-2014.12.31. 3、随机李代数的结构,福建省自然科学基金面上项目( 2020J01162),5万元,主持人, 2020.08.01-2023.07.31. 4、有限维复单李代数及其子代数的局部自同构和局部导子,福建省自然科学基金面上项目(2016J01006),3万元,主持人,2016.04.01-2019.04.30. 5、利用代数表示论实现李双代数,福建省自然科学基金面上项目(2013J01005), 3万元, 主持人, 2013.01.01-2015.12.31. 6、有限维代数的表示理论与椭圆李代数, 福建省自然科学基金青年创新项目(2009J05005), 3万元, 主持人, 2009.03.01-2012.03.01. 7、基于自同构群的有限群的固定集和固定数问题,国家自然科学基金面上项目(11971474),排名第三,2020.01.01-2023.12.31. 8、典型群及其相关代数结构上几类图的自同构群及自同态半群,国家自然科学基金项目面上项目(11571360),排名第二, 2016.01.01-2019.12.31. 9、导出范畴的若干问题及应用研究,国家自然科学基金面上项目(11071040), 排名第四,2011.01.01-2013.12.31.
代表性科研论文: 1. Zhengxin Chen,Yanan Lin. Tubular algebras and affine Kac-Moody algebras, Science in China (Series A), 2007, 50 (4):521-532. 2. Zhengxin Chen, Qinghua Chen. Triangular 3. Dengyin Wang, Wei Zhang, Zhengxin Chen. Product zero derivations of the parabolic subalgebras of simple Lie algebras. Journal of Lie Theory, 2010, 20: 167-174. 4. Zhengxin Chen, Dengyin Wang. Non-linear maps satisfying derivability on standard parabolic subalgebras of finite-dimensional simple Lie algebras, Linear and Multilinear Algebras, 2011,59(3): 261-270. 5. Zhengxin Chen, Dengyin Wang. Derivations of certain nilpotent Lie algebras over commutative rings,Communications in Algebra,2011, 39(10): 3736-3752. 6. Dengyin Wang, Zhengxin Chen. Quasi-automorphisms of Lie algebras. Communication in Algebra, 2011,39(7): 2388-2395. 7. Dengyin Wang, Yanxian Zhao, Zhengxin Chen, Non-linear maps on simple Lie algebras preserving Lie products, Communications in Algebra, 2011, 39(2): 424-434. 8. Dengyin Wang, Zhengxin Chen, Invertible linear maps on simple Lie algebras preserving commutativity, Proceedings of American Mathematics Society,2011,139: 3881-3893. 9. Dengyin Wang, Xiaoxiang Yu, Zhengxin Chen, A class of zero product determined Lie algebras, Journal of Algebra, 2011, 331: 145-151. 10.Zhengxin Chen. Automorphisms and derivations of certain solvable Lie algebras over commutative rings. Communications in Algebra,2012, 40(2): 738-769. decomposition of composition algebras of domestic canonical algebras, Communications in Algebra, 2009, 37(8): 2785-2803. 11. Zhengxin Chen, Zhankui Xiao. Nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional simple Lie algebras. Linear and Multilinear Algebras, 2012, 60(6): 645-656. 12. Dengyin Wang, Xiaoxiang Yu, Zhengxin Chen, Maps determined by action on square-zero elements, Communications in Algebra, 2012, 40(11): 4255-4262. 13. Zhengxin Chen, Dengyin Wang. Nonlinear maps satisfying derivability on parabolic subalgebras of the general linear Lie algebras, Linear and Multilinear Algebras, 2012, 60: 149-157. 14. Zhengxin Chen, Ya’nan Lin. A realization of elliptic Lie algebras of type F_4^{(2,2)} by the Ringel-Hall approach, Journal of Algebra, 2012, 350: 108-131. 15. Zhengxin Chen. Generalized derivations on parabolic subalgebras of general linear algebras, Acta Mathematica Scientia, 2014, 34B(3): 814-828. 16. Zhengxin Chen. Canonical algebras of type (n1, n2, n3) and Kac-Moody algebras, Communications in Algebra, 2014, 42(8): 3297-3324. 17. Zhengxin Chen, Bing Wang. Commuting derivations and automorphisms of certain nilpotent Lie algebras over commutative rings, Communications in Algebra, 2015, 43(5): 2044-2061. 18. Zhengxin Chen, Dengyin Wang. 2-local automorphisms of finite- dimensional simple Lie algebras, Linear Algebra and its Applications, 2015, 486: 335-344. 19. Zhengxin Chen. Biderivations and linear commuting maps on simple generalized Witt algebras over a field, Electronic Journal of Linear Algebra, 2016, 31: 1-12. 20. Jinjing Chen, Zhengxin Chen. A class of simple Lie algebras attached to unit forms, Frontiers of mathematics in China, 2017, 12(4): 787–803. 21. Zhengxin Chen, Houjin Liu. Strong commutativity preserving maps of strictly triangular matrix Lie algebras, Journal of Algebra and its application, 2019(7), 1950134(15 pages). 22. Zhengxin Chen. Nonlinear anti-commuting maps of strictly triangular matrix Lie algebras. Operators and Matrices, 2019, 13(1): 301-310. 23. Zhengxin Chen, Chundan Zhu. Commuting automor- phisims of the group consisting of the unit triangular matrices. Houston Journal of Mathematics, 2019, 45(3): 647-658. 24. Yalong Yu, Zhengxin Chen. Local derivations on Borel subalgebras of finite-dimensional simple Lie algebras, Communications in Algebra, 2020, 48(1): 1-10. 25. Zhengxin Chen, Yalong Yu. Regular Hom-Lie structures on Borel subalgebras of finite-dimensional simple Lie algebras,Communications in Algebra, 2020, 48(5): 2065–2071. 26.Zhengxin Chen,Yu’e Zhao. Strong commutativity preserving maps of upper triangular matrix Lie algebras over commutative ring. Bulletin of Korean Mathetical Society, 2021, 58 (4): 973–981. 27. Zhengxin Chen, Yalong Yu. Regular Hom-Lie structures on strictly upper triangular matrix Lie algebras. Journal of Algebra and Its Applications, 2022,21(4) 2250081.
28. Zhengxin Chen, Yalong Yu. Biderivations and strong commutativity- preserving maps on parabolic subalgebras of simple Lie algebras. Linear and Multilinear Algebra, 2022, 70(14): 2659–2671. 29. Zhengxin Chen,Yu Wang. Triple derivations on parabolic subalgebras of Kac-Moody algebras. Communications in Algebra, 2022, 50(9): 4109–4115. 30. Zhengxin Chen, Yu Wang. Skew-symmetric biderivations and linear commuting maps of Kac-Moody algebras. Linear and Multilinear Algebra, 2023,71(5): 867-874.
|