美国加州大学尔湾分校李松鹰教授学术报告

科研楼18号楼1102

发布者:韩伟发布时间:2025-06-12浏览次数:10

报告题目:Holomorphic Maps and Bergman Metrics

时       间:2025年6月17日(星期二)15:30-17:00

                 2025年6月20日(星期五)9:30-11:00

地       点:科研楼18号楼1102 

主       办:数学与统计学院,、分析数学及应用教育部重点实验室、福建省分析数学及应用重点实验室、福建省应用数学中心(福建师范大学)

参加对象:相关方向教师和研究生


报告摘要:In one complex variable, one of the most important theorem is the Riemann Mapping Theorem. However, in several complex variables, there is no Riemann Mapping Theorem starting with an counterexamples of Poincare in the beginnin of the 20th century. There have been a lot of development along the holomorphic mapping theory. The major problem (called mapping theorem) remains open. In this series of talk, I will give a short suvery on this subject. I will also introduce the Bergman space, Bergman metric. And I will discuss my recent work with Xiaojun Huang and Nick Treuer on the manifolds whose Bergman metric having constant holomorphic sectional curvature.


报告人简介:李松鹰(Song-Ying Li)目前是美国加州大学尔湾分校 (UC, Irvine) 正教授。李松鹰教授是国际著名的多复变专家,在多复变领域中的许多重要问题,如调和映射的正则性问题和刚性问题、Kohn-Laplacian的第一特征值估计以及Cauchy-Riemann方程解的正则性问题等有突出的工作,研究结果发表在Analysis&PDEs, J.Diff. Geom., Math. Ann., Adv. Math., J. Func. Anal., Trans. Amer. Math. Soc., J. London Math. Soc., Cal. Var. Partial Differential Equations, J. Geom. Anal., Math. Z.等国际顶尖数学期刊上。