暨南大学王国长教授学术报告

科研楼18号楼1102

发布者:韩伟发布时间:2025-04-24浏览次数:10

报告题目:A data-driven approach for independence testing in multivariate time series based on Chatterjee's rank correlation

时       间:2025年 4月30 日(星期三)10:00

地       点:科研楼18号楼1102

主       办数学与统计学院

参加对象:感兴趣的老师和学生 


报告摘要:Verifying whether a multivariate time series follows an independent and identically distributed (i.i.d.) sequence is a critical issue.This paper introduces a novel method for testing this assumption by analyzing the dependency structure inherent in the data. Specifically, we utilize Chatterjee's rank correlation to develop a new analytical tool, termed  the auto-Chatterjee's rank correlation matrix (ACRCM).Each element of the ACRCM quantifies Chatterjee's rank correlation, effectively capturing nonlinear dependencies within the observed series.We develop an ACRCM-based statistic with fixed order for testing independence in multivariate time series, which asymptotically follows a chi-squared distribution under the assumption of independence. Furthermore, we introduction a data-driven approach for automatically determining the optimal order based on the data characteristics.This data-driven approach offers three key advantages:first, it eliminates the need for manually specifying the order, as the optimal order is automatically selected based on the data;second, under the null hypothesis, the selected order is one, and the chi-square distribution has degrees of freedom correspond to the square of the data dimension;third, the proposed data-driven approach demonstrates superior sensitivity to detecting high-order dependencies.We rigorously derive the asymptotic properties of the proposed method and validate its effectiveness through extensive simulation experiments.


报告人简介:王国长,暨南大学经济学院统计与数据科学系,教授、博士生导师,国家级青年人才计划入选者。主要研究方向为函数型数据,时间序列和机器学习,至今在JoE、JBES、Sinica和Scandinavian Journal of Statistics等重要学术期刊发表论文30余篇。主持国家级项目4项,省部级项目4项。任中国现场统计研究会资源与环境统计分会常务理事;中国旅游大数据协会,理事,副秘书长;广东省现场统计协会常务理事,秘书长。