报告题目: Approximation of nonlinear stochastic delay differential equations
时 间:2022年10月10日(星期一)下午15:00-17:00
地 点:腾讯会议(ID:205-477-636)
主 办:数学与统计学院
参加对象:统计系老师与学生
报告摘要:This talk focuses on the explicit numerical method for approximating the invariant measure of nonlinear stochastic delay differential equations (SDDEs). Precisely, we construct a $C([-\tau,0];\RR^d)$-valued explicit truncated Euler-Maruyama linear interpolation segment process (TEMLISP), and prove that it is asymptotically stable in distribution and admits a unique numerical invariant measure. Furthermore, we show that the numerical invariant measure converges to the exact one in the Fortet-Mourier distance $d_{\Xi}$ as the step size tends to zero. Moreover, we give an example and some numerical simulations to support our theory.
报告人简介:李晓月,东北师范大学数学与统计学院教授,博士生导师,美国数学会评论员。长期从事随机微分方程稳定性理论、应用及数值逼近的研究, 在《SIAM J. Numer. Anal.》、 《SIAM J. Appl. Math.》、 《J. Differential Equations》、《SIAM J. Control Optim.》 等国际高水平期刊上发表SCI论文40余篇。主持国家自然科学基金面上项目和省部级项目多项,参与国家重点研发计划项目的研究工作。