报告题目:Uniform Poincare inequalities and logarithmic Sobolev inequalities for mean field particle systems
时 间:2024年11月11日(星期一)9:30
地 点:理工北楼601
主 办:数学与统计学院、分析数学及应用教育部重点实验室、福建省分析数学及应用重点实验室、福建省应用数学中心(福建师范大学)、福建师范大学数学研究中心
参加对象:概率统计系及其他感兴趣的师生
报告摘要:In this talk we show some explicit and sharp estimates of the spectral gap and the log-Sobolev constant for mean field particles system, uniform in the number of particles, when the confinement potential have many local minimums. Our uniform log-Sobolev inequality, based on Zegarlinski‘s theorem for Gibbs measures, allows us to obtain the exponential convergence in entropy of the McKean-Vlasov equation with an explicit rate constant, generalizing the result of Carrillo-McCann-Villani(2003) by means of the displacement convexity approach, or Malrieu(2001,2003) by Bakry-Emery technique or the recent work of Bolley-Gentil-Guillin by dissipation of the Wasserstein distance.This talk is based on a joint work with Arnaud Guillin, Liming Wu and Chaoen Zhang.
报告人简介: 刘伟,武汉大学数学与统计学院教授、博士生导师、副院长,入选国家青年人才支持计划,中国概率统计学会常务理事、副秘书长,中国现场统计研究会教育统计与管理分会常务理事,《应用概率统计》杂志编委。2009年博士毕业于武汉大学,主要从事随机分析与随机算法的研究,在Comm.Math.Phys.、J.Math.Pures Appl.、Ann.Appl.Probab.、Stochastic Process. Appl.、Ann.Inst. Henri Poincare Probab.Stat.、Sci.China Math.等国内外一流学术期刊发表论文30多篇。