Rutgers University–Camden Siqi Fu 教授学术报告 6月20日下午
发布时间: 2017-06-16 访问次数: 132

报告人:Siqi Fu 教授  Rutgers University–Camden


报告题目:Hearing pseudoconvexity in Lipschitz domains with holes via ∂ ̄


时   间:2017620日(星期二)1500 -1600

地    点:旗山校区理工北楼601报告厅

主    办:数学与计算机科学学院, 福建省分析数学及应用重点实验室, 数学研究中心


报告摘要:In this talk, we explain how one can determine pseudoconvexity in Lipschitz domains with holes via spectral property of the ∂ ̄-Neumann Laplacian. More precisely, let Ω = Ω\ D where Ωis a bounded domain with connected complement in Cn and D is relatively compact open subset of Ωwith connected complement in Ω. We obtain characterizations of pseudoconvexity of Ωand D through the vanishing or Hausdorff property of the Dolbeaultcohomology groups on various function spaces. In particular, we show that if the boundaries of Ωand D are Lipschitz and C2-smooth respectively, then both Ωand D arepseudoconvex if and only if 0 is not in the spectrum of the ∂-Neumann Laplacian on (0,q)-forms for 1 ≤ q ≤ n − 2 when n ≥ 3; or 0 is not a limit point of the spectrum of the ∂-Neumannn Laplacian on (0, 1)-forms when n = 2. This is a joint work with Christine Laurent-Thi ́ebaut and Mei-Chi Shaw.


专家简介:Siqi FuRutgers University–Camden教授, 1984年获华南师范大学学士学位,1987年获北京大学硕士学位,1994年获Washington University博士学位。