法国瓦朗西纳大学Luc Vrancken教授学术报告5月8日上午
法国瓦朗西纳大学Luc Vrancken教授学术报告5月8日上午
发布时间: 2018-05-04 访问次数: 13


学术讲座【Application of the Tsinghua principle in submanifold theory

  

时间:201858(星期二)上午09:00

  

地点:旗山校区理工北楼601报告厅

  

主办:数学与信息学院、福建省分析数学及应用重点实验室

  

主讲:Valenciennes UniversityLuc Vrancken教授

  

参加对象:数学方向教师及研究生


专家简介:国际著名微分几何专家,现任法国瓦朗西纳(Valenciennes University)大学和比利时天主教鲁汶大学(Katholieke Universiteit Leuven)教授,德国洪堡基金获得者,主要研究仿射微分几何、子流形几何等。

  

报告摘要:The author together with Wang Xianfeng and Li Haizhong became aware of the principal while visiting Tsinghua University in 2013.
 In contrast to the Gauss equation which when expressed in the components of the second fundamental form gives quadratic equations, the Tsinghua principal gives linear equations for the components of the second fundamental form. Recent applications of this principal lead to classification (or at least allow significant progress) in the study of:

-the classification of constant curvature immersions in the nearly kaehler $S^3 \times S^3$

-the classification of constant curvature immersions in the complex quadric $Q^n$

-the classification of constant curvature immersions in the complex hyperbolic quadric $Q^n$

 -the classification of affine hyperspheres $M=M_1(c_1) \times M_2(c_2)$

 -the classification of minimal lagrangian immersions $M=M_1(c_1) \times M_2(c_2)$ in complex space forms

-the classification of lagrangian immersions in the nearly Kaehler $S^6$ which are a warped product with 1 dimensional base

-the classification of hypersurfaces in $\mathbb R^{n+1}$ which are a warped product of  1 dimensional base with an (n-1) manifold with constant sectional curvature

-the study affine hypersurfaces with constant sectional curvature

-the study of conformally flat affine hyperspheres