马昌凤
发布时间: 2014-06-03 访问次数: 3434

 姓名:马昌凤 (macf@fjnu.edu.cn)  

 

姓名:马昌凤性别:职称:教授学科专长:计算数学

研究方向:数值代数与优化、偏微分方程数值解

E-Mailprof.macf@hotmail.com

个人简介:男,19626月生,湖南隆回人,教授,博士生导师。现任职于福建师范大学数学与信息学院。

教育经历:

2000/9-2003/7 中国科学院数学与系统科学研究院,计算数学,博士

1994/9-1997/7 湖南大学应用数学系,计算数学,硕士

1979/9-1982/7 邵阳学院,数学教育

科研与学术工作经历:

2006/9-至今福建师范大学,数学与信息学院,教授

2017/8-2017/8 南开大学,陈省身数学研究所,访问学者

2013/6-2013/7 南开大学,陈省身数学研究所,访问学者

2008/1-2008/2 新加坡南洋理工大学,数学系,访问学者

2005/2-2006/1 浙江师范大学,数理学院,教授

2004/4-2006/6 华中科技大学,数学系,博士后

2004/2-2004/3 北京飞箭软件有限公司,访问学者

2003/2-2005/2 桂林电子科技大学,数学与计算科学学院,教授

1997/8-2000/7 长沙理工大学,数学与计算科学学院,副教授

学术兼职:

中国计算数学学会理事; 福建省运筹学会副理事长

研究方向:

主要从事数值代数、数值优化,偏微分方程数值解等方面等研究

成果奖励

2012年度重庆市科学技术奖(自然科学奖)二等奖(排名第二)

科研项目:

1. 中国科学院战略性先导科技专项(B)XDB18010202, 子课题:热力学方程离散鞍点系统的数据测试,2017/1-2019/1215万元,在研,主持。

2. 国家基础研究计划,2014CB845906,子课题:时谐涡流场离散鞍点问题的检测系统,2017/5-2018/63万元,在研,主持。

3. 福建省自然科学基金面上项目,2016J01005,大型矩阵方程的迭代法及其预处理技术,2016/4-2019/43万元,在研,主持。

4. 财政部重大科研仪器设备研制专项,航空超导全张量磁梯度测量装,ZDYZ2012-1-02,子课题:大型稀疏线性系统的变分迭代法测试分析,2014/1-2016/124万元,已结题,主持。

5. 福建省自然科学基金面上项目,2013J01006,浅水波方程的格子玻尔兹曼模型与数值仿真,2013/1-2015/123万元,已结题,主持。

6. 国家自然科学基金面上项目,11071041,随机变分不等式与互补问题的迭代算法研究,2011/1-201311225万元,已结题,主持。

7. 福建省自然科学基金面上项目,2009J01002,对称锥互补问题数值算法研究, 2009/6-2011/33万元,已结题,主持。

8. 福建省资助省属高校项目(JK项目),2008F5019,基于高性能计算的复杂流体的格子Boltzmann方法,2008/5-2011/63万元,已结题,主持。

9. 国家自然科学基金面上项目,10661005,麦克斯韦方程组快速数值算法研究,2007/1-2009/1225万元,已结题,主持。

10. 广西自然科学基金面上项目,桂科自0640165,电磁场麦克斯韦方程组的快速数值算法研究, 2006/2-2009/24万元,已结题,主持。

11. 中国博士后科学基金项目(二等),2004036133,基于非规范势的电磁场麦克斯韦方程组快速数值算法研究,2004/9-2006/62万元,已结题,主持。

12. 广西自然科学基金面上项目,桂科基04480753D涡流场A-Φ电磁势方法及其解耦技术,2004/5-2007/65万元,已结题,主持。

教学情况:

博士课程:偏微分方程数值解,数值代数与算法,非线性互补理论与算法

硕士课程:非线性数值分析,最优化理论与方法,矩阵分析与计算

本科课程:数值分析与数学实验,数学建模与数学软件

论文著作:

(一)学术著作:

1. 数值代数与算法,国防工业出版社,2017.360万字

2. 最优化计算方法及其MATLAB程序实现,国防工业出版社,2015.639万字

3. 现代数值分析,国防工业出版社,2013.339万字

4. 最优化方法及其MATLAB程序设计,科学出版社,2010.829万字

5. 非稳态电磁场的A-ф方法,科学出版社,2008.716.8万字

6. 现代数值计算方法,科学出版社,2008.628.2万字

(二)期刊论文:近五年部分论文

[1] B.-H. Huang, C.-F. Ma, Gradient-based iterative algorithms for generalized coupled Sylvester-conjugate matrix equations, Comp. Math. Appl., 2018, 75(7): 2295-2310.

[2] Y.-F. Ke, C.-F. Ma, Alternating Direction Method for a Class of Sylvester Matrix Equations with Linear Matrix Inequality Constraint, Numer. Func. Anal. Optim., 2018, 39I(3): 257-275.

[3] Y.-F. Ke, C.-F. Ma, Zhiru Ren, A new alternating positive semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models, Front. Math. China, 2018, 13(2): 313-340.

[4] N. Huang, C.-F. Ma, J. Zou, Spectral Analysis, Properties and Nonsingular Preconditioners for Singular Saddle Point Problems, Comput. Meth. Appl. Math., 2018, 18(2): 237-256.

[5] N. Huang, C.-F. Ma, The structure-preserving doubling algorithms for positive definite solution to a system of nonlinear matrix equations, Linear & Multilinear Algebra, 2018, 66(4): 827-839.

[6] B.-H. Huang, C.-F. Ma, The relaxed gradient-based iterative algorithms for a class of generalized coupled Sylvester-conjugate matrix equations, Journal of the Franklin Institute, 2018, 355(6): 3168-3195.

[7] Cheng-Liang, C.-F. Ma, The Uzawa-PPS iteration methods for nonsingular and singular non-Hermitian saddle point problems, Comp. Math. Appl., 2018, 75(2), 703-720.

[8] Y.-J. Xie, C.-F. Ma, A relaxed two-step splitting iteration method for computing PageRank, Comput. Appl. Math., 2018, 37(1): 221-233.

[9] Y.F. Ke, C.F. Ma, A new relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations, Comput. Appl. Math., 2018, 37(1): 515-524.

[10] B.-H. Huang, C.-F. Ma, An iterative algorithm for the least Frobenius norm least squares solution of a class of generalized coupled Sylvester-transpose linear matrix equations, Appl. Math. Comput., 2018, 328: 58-74.

[11] C.-Q. Lv, C.-F. Ma, BCR method for solving generalized coupled Sylvester equations over centrosymmetric or anti-centrosymmetric matrix, Comp. Math. Appl., 2018, 75(1), 70-88.

[12] Y.-F. Ke, C.-F. Ma, The unified frame of alternating direction method of multipliers for three classes of matrix equations arising in control theory, Asian Journal of Control, 2018, 20(1): 437-454.

[13] Q.-Q. Zheng, C.-F. Ma, A class of accelerated parameterized inexact Uzawa algorithms for complex symmetric linear systems, Appl. Math. Comput., 2018, 320: 547-556.

[14] Chang-Qing Lv, C.-F. Ma, A Levenberg-Marquardt method for solving semi-symmetric tensor equations, J. Comput. Appl. Math., 2018, 332: 13-25.

[15] Jia Tang, C.-F. Ma, Generalized conjugate direction method for solving a class of generalized coupled Sylvester-conjugate transpose matrix equations over generalized Hamiltonian matrices, Comp. Math. Appl., 2017, 74, 3303-3317.

[16] N. Huang, C.-F. Ma, Jun Zou, Analysis on block diagonal and triangular preconditioners for a PML system of an electromagnetic scattering problem, Comp. Math. Appl., 2017, 74, 2423-2437.

[17] N. Huang, C.-F. Ma, Analysis on inexact block diagonal preconditioners for elliptic PDE-constrained optimization problems, Comp. Math. Appl., 2017, 74, 2423-2437.

[18] Y.-F. Ke, C.-F. Ma, Alternating direction methods for solving a class of Sylvester-like matrix equations (AXB,CXD)=(G,H), Linear & Multilinear Algebra, 2017, 65(11): 2268-2292.

[19] C.-R. Chen, C.-F. Ma, A matrix CRS iterative method for solving a class of coupled Sylvester-transpose matrix equations, Comp. Math. Appl., 2017, 74(6): 1223-1231.

[20] Jing-Tao Li, C.-F. Ma, The parameterized upper and lower triangular splitting methods for saddle point problems, Numer. Algor., 2017, 76(2): 413-425.

[21] B.-H. Huang, C.-F. Ma, Symmetric least squares solution of a class of Sylvester matrix equations via MINIRES algorithm, Journal of the Franklin Institute, 2017, 354: 6381-6404.

[22] C.-Q. Lv, C.-F. Ma, Picard splitting method and Picard CG method for solving the absolute value equation, J. Nonlin. Sci. Appl., 2017, 10(7): 3643-3654.

[23] Y.-F. Ke, C.-F. Ma, An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations, Numer. Algor., 2017, 75(4): 1103-1121.

[24] Y.-F. Ke, C.-F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput., 2017, 311:195-202.

[25] B.-H. Huang, C.-F. Ma, On the least squares generalized Hamiltonian solution of generalized coupled Sylvester-conjugate matrix equations, Comp. Math. Appl., 2017, 74(3): 532-555.

[26] J.-T. Li, C.-F. Ma, Semi-convergence analysis of parameterized ULT splitting iteration methods for singular saddle point problems, Comput. Math. Appl., 2017, 73(10): 2285-2292.

[27] J-J. Hu, C.-F. Ma, Minimum-norm Hamiltonian solutions of a class of generalized Sylvester-conjugate matrix equations, Comput. Math. Appl., 2017, 73(5): 747-764.

[28] Y.-F. Ke, C.-F. Ma, The dimensional splitting iteration methods for solving saddle point problems arising from time-harmonic eddy current models, Appl. Math. Comput., 2017, 303: 146-164.

[29] Y.-F. Ke, C.-F. Ma, An alternating direction method for nonnegative solutions of the matrix equation AX+YB = C, Comput. Appl. Math., 2017, 36: 359-365.

[30] C.-R. Chen, C.-F. Ma, A generalization of the HSS-based sequential two-stage method for solving non-Hermitian saddle point problems, Numer. Algor., 2016, 73(4): 1073-1090.

[31] C.-F. Ma, H.-Z. Lu, Numerical Study on Nonsymmetric Algebraic Riccati Equations, Mediter J Math, 2016, 3(6):4961-4973.

[32] C.-R. Chen, C.-F. Ma, AOR-Uzawa iterative method for a class of complex symmetric linear system of equations,Comp. Math. Appl., 2016, 72: 2462-2472.

[33] N. Huang, C.-F. Ma, Positive definite and semi-definite splitting methods for non-Hermitian positive definite linear systems, J. Comput. Math., 2016, 34(3): 287-303.

[34] C.-F. Ma, B.-G. Chen, S.-J. Pan, A modified feasible semi-smooth asymptotically Newton method for nonlinear complementarity problems, J. Inequal. Appl., 2016, 230: 1-13.

[35] Q.-Q. Zheng, C.-F. Ma, Accelerated PMHSS iteration methods for complex symmetric linear systems, Numer. Algor., 2016, 73(2): 501-516.

[36] Y.-F. Ke, C.-F. Ma, A note on “A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations”, Applied Numerical Mathematics, 2016, 108: 223-225.

[37] C.-F. Ma, N. Huang,Modified modulus-based matrix splitting algorithms for a class of weakly non-differentiable nonlinear complementarity problems, Appl. Numer. Math., 2016, 108: 116-124.

[38] N. Huang, C.-F. Ma, Y.-J. Xie, The derivative-free double Newton step methods for solving system of nonlinear equations, Mediter. J. Math., 2016, 13(4): 2253-2270.

[39] N. Huang, C.-F. Ma,The inversion-free iterative methods for a system of nonlinear matrix equations, Int. J. Comput. Math., 2016, 93(9):1470-1483.

[40] Y.-F. Ke, C.-F. Ma, Spectrum analysis of a more general augmentation block preconditioner for generalized saddle point matrices, BIT Numer. Math., 2016, 56: 489-500.

[41] M.-L. Zeng, C.-F. Ma, A parameterized SHSS iteration method for a class of complex symmetric system of linear equations, Comp. Math. Appl., 2016, 71(10): 2124-2131.

[42] Y.-J. Xie, C.-F. Ma, A modified positive-definite and skew-Hermitian splitting preconditioner for generalized saddle point problems from the Navier-Stokes equation, Numer. Algor., 2016, 72:243-258.

[43] N. Huang and C.-F. Ma, The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems, Numer. Linear Algebra Appl., 2016, 23: 558-569.

[44] Q.-Q. Zheng, C.-F. Ma, A class of triangular splitting methods for saddle point problems, J. Comput. Appl. Math., 2016, 298: 13-23.

[45] N. Huang and C.-F. Ma, The modified conjugate gradient method for obtaining the minimum-norm solution of the generalized coupled Sylvester-conjugate matrix equations, Appl. Math. Model., 2016, 40: 1260-1275.

[46] N. Huang and C.-F. Ma, A new GSOR method for generalised saddle point problems, East Asian J. Appl. Math., 2016, 6: 23-41.

[47] Q.-Q. Zheng, C.-F. Ma, Preconditioned AHSS-PU alternating splitting iterative methods for saddle point problems, Appl. Math. Comput., 2016, 273: 217-225.

[48] Y.-J. Xie, C.-F. Ma, The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation, Appl. Math. Comput.,2016, 273: 1257-1269.

[49] Y.-J. Xie, C.-F. Ma, A generalized Newton method of high-order convergence for solving the large-scale linear complementarity problem, J. Inequal. Appl.,2015, 410: 1-12.

[50] N. Huang and C.-F. Ma, Parallel multisplitting iteration methods based on M-splitting for the PageRank problem, Appl. Math. Comput.,2015, 271: 337-343.

[51] N. Huang, C.-F. Ma, The nonlinear inexact Uzawa hybrid algorithms based on one-step Newton method for solving nonlinear saddle-point problems, Appl. Math. Comput., 2015, 270: 291-311.

[52] N. Huang and C.-F. Ma, A globally convergent damped Gauss-Newton method for solving the extended linear complementarity problem, J. Numer. Math., 2015, 23(3): 247-256.

[53] Y.-F. Ke, C.-F. Ma, A neural network for the generalized nonlinear complementarity problem over a polyhedral cone, J. the Austr. Math. Soc., 2015, 99(3): 364-379.

[54] J. Tang, Y.-J. Xie, C.-F. Ma, A modified product preconditioner for indefinite and asymmetric generalized saddle-point matrices, Appl. Math. Comput.,2015, 268: 303-310.

[55] N. Huang and C.-F. Ma, Two inversion-free iterative algorithms for computing the maximal positive definite solution of the nonlinear matrix equation, Appl. Comput. Math.s,2015, 14(2): 158-167.

[57] L.-Y. Hu, G.-D. Guo, C.-F. Ma, Image processing using Newton-based algorithm of nonnegative matrix factorization, Appl. Math. Comput., 2015, 269: 956-964.

[58] C.-R. Chen, C.-F. Ma, A generalized shift-splitting preconditioner for singular saddle point problems,Appl. Math. Comput., 2015, 269: 947-955.

[59] Y.-J. Xie, C.-F. Ma, The scaling conjugate gradient iterative method for two types of linear matrix equations, Comp. Math. Appl.,2015, 70(5): 1098-1113.

[60] C.-F. Ma, Q.-Q. Zheng, The corrected Uzawa method for solving saddle point problems, Numer. Linear Algebra Appl., 2015,22: 717-730.

[61] Y.-J. Xie, C.-F. Ma, The matrix iterative methods for solving a class of generalized coupled Sylvester-conjugate linear matrix equations, Appl. Math. Model., 2015, 39: 4895-4908.

[62] N. Huang and C.-F. Ma, Y.-J. Xie, An inexact relaxed DPSS preconditioner for saddle point problem, Appl. Math. Comput., 2015, 265:431-447.

[63] Y.-J. Xie, C.-F. Ma, The MGPBiCG method for solving the generalized coupled Sylvester -conjugate matrix equations, Appl. Math. Comput.,2015, 265: 68-78.

[64] N. Huang and C.-F. Ma, Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation, Comp. Math. Appl.,2015, 69: 494-502.

[65] L-Y. Hu, G.-D. Guo,C.-F. Ma, The least squares anti-bisymmetric solution and the optimal approximation, Appl. Math. Comput.,2015, 259: 212-219.

[66] Y.-D. He, C.-F. Ma, Bin Fan, A corrected Levenberg-Marquardt algorithm with a nonmonotone line search for the system of nonlinear equation, Appl. Math. Comput.,2015, 260: 159-169.

[67] Y.-F. Ke, C.-F. Ma, Alternating direction method for generalized Sylvester matrix equationAXB+CYD=E, Appl. Math. Comput.,2015, 260: 106-125.

[68] J. Tang, C.-F. Ma, A smoothing Newton method for symmetric cone complementarity problems, Optim. Lett., 2015, 9:225-244.

[69] Q.-Q. Zheng, C.-F. Ma, Fast parameterized inexact Uzawa algorithm for complex symmetric linear systems, Appl. Math. Comput., 2015, 256: 11-19.

[70] N. Huang and C.-F. Ma, The BGS-Uzawa and BJ-Uzawa iterative methods for solving the saddle point problem, Appl. Math. Comput., 2015, 256: 94-108.

[71] C.-R. Chen and C.-F. Ma, A generalized shift-splitting preconditioner for saddle point problems, Applied Mathematics Letters, 2015, 43: 49-55.

[72] N. Huang and C.-F. Ma, Some predictor-corrector-type iterative schemes for solving nonsymmetric algebraic Riccati equations arising in transport theory, Numer. Linear Algebra Appli., 2014, 21: 761-780.

[73] Y.-F. Ke and C.-F. Ma, A preconditioned nested splitting conjugate gradient iterative method for the large sparse generalized Sylvester equation, Comp. Math. Appl., 2014, 68: 1409-1420.

[74] Q.-Q. Zheng, C.-F. Ma, A class of accelerated Uzawa algorithms for saddle point problems, Appl. Math. Comput., 2014, 247: 244-254.

[75] N. Huang and C.-F. Ma, Exceptional family and solvability of the second-order cone complementarity problems, Appl. Math. Comput., 2014, 244: 561-566.

[76] Y.-F. Ke and C.-F. Ma, On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear complementarity problems, Appl. Math. Comput., 2014, 243: 413-418.

[77] Y.-J. Xie, N. Huang and C.-F. Ma, Iterative method to solve the generalized coupled Sylvester-transpose linear matrix equations over reflexive or anti-reflexive matrix, Comp. Math. Appl., 2014, 67: 2071-2084.

[78] M.-Y. Li, C.-F. Ma*, A continuation method for linear complementarity problems with P0-matrix, Optimization, 2014, 63(5): 757-773.

[79] Q.-Q. Zheng, C.-F. Ma, On normal and skew-Hermitian splitting iteration methods for large sparse continuous Sylvester equations, J. Comput. Appl. Math., 2014, 268: 145-154.

[80] Q.-Q. Zheng, C.-F. Ma, A new SOR-like method for the saddle point problems, Appl. Math. Comput., 2014, 233: 421-429.

[81]N. Huang and C.-F. Ma*, The modified conjugate gradient methods for solving a class of the generalized coupled Sylvester-transpose matrix equations, Comp. Math. Appl., 2014, 67: 1545-1558.

[82] J.-H. Liu and C.-F. Ma, A new nonmonotone trust region algorithm for solving unconstrained optimization problems, J. Comput. Math., 2014, 32(4): 476-490.

[83] N. Huang and C.-F. Ma, A sufficient condition that has no exceptional family of elements for SDCP, Optim. Lett., 2014, 8: 259-265.

指导研究生:

博士研究生:2017李成梁;2016黄宝华,吕长青;2015陈彩荣;2014柯艺芬;2013黄娜;2012谢亚君;2009赖惠林

硕士研究生:2017卜凡,吕桂阳;2016闫熙;2015李成梁,胡晶晶;2014李景涛,王婷;2013陈彩荣;2012卢怀泽,郑青青,闫建瑞,柯艺芬;2011黄娜,何叶丹;2010级:范斌,刘景辉,禹德,吴超,尤鸿明;2009张丽娜,[乔涵麟]2008董朝丽,余芝云,潘少君,许小芳,王燊,[唐江花,刘宁,柴婧,丁小妹]2007陈林婕,谢亚君,叶海,简薇薇,薛凌霄,陈秀琴,[王学斌,李梅艳,倪健]2006陈文平,陈碧连,赖惠林,林钊,[钟志鹏,何婵]2005 [龙君,唐嘉,陈小红]2004 [何郁波,田亚娟]2003 [石武军,唐菊珍]