马昌凤
发布时间: 2014-06-03 访问次数: 2259

 姓名:马昌凤 (macf@fjnu.edu.cn)  

 

个人简介:马昌凤:男,19626月生,湖南隆回人,教授,博士生导师。  

社会兼职:福建省数学学会理事。   

教育经历:  

l        19799月—19827月,邵阳学院数学教育专业。    

l        19949月—19977月,湖南大学应用数学系,硕士研究生毕业,获硕士学位  

l         20009月—20037月,中国科学院数学与系统科学研究院,博士研究生毕业,获博士学位   

工作经历:  

l        1982719948月 湖南省隆回第十三中学    

l        19977月—20008月 长沙理工大学    

l        20037月—20051月 桂林电子科技大学    

l        20052月—20061月 浙江师范大学    

l        20062月—现在福建师范大学  

l        2004220043月 到北京飞箭软件有限公司访问;    

l        2004620066月 在华中科技大学做博士后研究;    

l        2008120083月 到新加坡南洋理工大学访问。  

l        2013620137月 到陈省身数学研究所访问  

研究方向:  

l        数值代数与数值优化  

l        非线性方程组数值解  

l        变分不等式与互补问题  

l        格子Boltzmann方法  

l        偏微分方程数值解及其应用    

成果奖励  

l        2012年度重庆市科学技术奖(自然科学奖)二等奖(排名第二)。  

科研项目  

l        浅水波方程的格子玻尔兹曼模型与数值仿真,福建省自然科学基金项目(编号:2013J01006),项目负责人,2013.1--2015.12.    

l        随机变分不等式与互补问题的迭代算法研究,国家自然科学基金项目(编号:11071041),项目负责人,起止日期:2011.12013.12  

l        对称锥互补问题数值算法研究,福建省自然科学基金项目(编号:2009J01002),项目负责人,起止日期:2009.62011.3。    

l        基于高性能计算的复杂流体的格子Boltzmann方法,福建省资助省属高校项目(项目编号: 2008F 5019),项目负责人,起止日期:2008.52011.6  

l        麦克斯韦方程组快速数值算法研究,国家自然科学基金项目(编号:10661005),项目负责人,起止日期:2007.1.12009.12.31  

l        基于非规范势的电磁场麦克斯韦方程组快速数值算法研究,中国博士后科学基金(编号:2004036133),项目负责人,起止日期:2004920066月。  

l        对称有界区域上的托普里兹算子,国家自然科学基金(编号:10361003), 主要参加者(排名第二),起止日期:20041月—200612月。  

l        电磁场麦克斯韦方程组的快速数值算法研究,广西自然科学基金项目(编号:桂科自0640165),项目负责人,起止日期:2006年—2009年。   

l        3D涡流场A-Φ电磁势方法及其解耦技术,广西自然科学基金(批准号:桂科基0448075),项目负责人,起止日期:20045月—20076月。   

教学:  

l      本科:数值分析;数学建模;高性能计算等。    

l      研究生:数值代数;非线性数值分析;最优化方法及其程序设计;非线性互补理论与算法;偏微分方程数值解等  

论文著作:  

1)著作:  

l      非稳态电磁场的A-ф方法,科学出版社,2008.7    

l      现代数值计算方法(MATLAB版),科学出版社,2008.6    

l      最优化方法及其Matlab程序设计,科学出版社,2010.8   

l      现代数值分析(MATLAB版),国防工业出版社,2013.3.  

2)论文:  

[1] Na Huang and Changfeng MaA sufficient condition that has no exceptional family of elements for SDCPOptimization Letters, 2013  

[2] Meiyan LiChangfeng MaA continuation method for linear complementarity problems with P0 matrixOptimization, 2014.  

[3] Yifen Ke, Changfeng Ma, The convergence analysis of the projection methods for a system of generalized relaxed cocoercive variational inequalities in Hilbert spaces, Fixed Point Theory and Applications, 2013, 2013:189.   

[4] Yifen Ke, Changfeng Ma, A new relaxed extragradient-like algorithm for approaching common solutions of generalized mixed equilibrium problems, a more general system of variational inequalities and a fixed point problem, Fixed Point Theory and Applications, 2013, 2013:126.   

[5] Jinghui Liu and Changfeng MaA nonmonotone trust region method with new inexact line search for unconstrained optimizationNumerical Algorithms, 2013, 64:1-20.   

[6] Na Huang, Changfeng Ma, A New Extragradient-like Method for Solving Variational Inequality Problems, Fixed Point Theory and Applications 2012, 2012:223.   

[7] Huilin Lai and Changfeng MaNumerical Study of the Nonlinear Combined Sine-Cosine -Gordon Equation with the Lattice Boltzmann MethodJournal of Scientific Computing, 2012, 53: 569–585.  

[8] Changfeng MaA Feasible Semismooth Gausee-Newton Method for Soling a Class of SLCPSJournal of Computational Mathematics, 2012,30:197-222.   

[9] Na Huang, Changfeng Ma, The numerical study of a regularized smoothing Newton method for solving P-0-NCP based on the generalized smoothing Fischer-Burmeister function, Applied Mathematics and Computation, 2012,218: 7253-7269.   

[10] Jia Tang, Changfeng Ma, An application of H differentiability to generalized complementarity problems over symmetric cones, Computer & Mathematics with Applications, 2012, 63:14-24.  

[11] Changfeng Ma,The semismooth and smoothing   Newton   methods for solving Pareto eigenvalue problem, Applied Mathematical Modelling,2012,36:279-287.   

[12] Huilin Lai, Changfeng Ma, Lattice Boltzmann model for generalized nonlinear wave equations, Physical Review E, 84, 046708(2011).   

[13] Jia Tang, Changfeng Ma, A smoothing   Newton   method for solving a class of stochastic linear complementarity problems, Nonlinear Analysis: Real World Applications, 2011, 12:3585-3601.  

[14]Bilian Chen, Changfeng Ma, A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P0-function, Journal of Global Optimization, 2011, 51:473–495.   

[15] Changfeng Ma, A regularized smoothing   Newton   method for solving the symmetric cone complementarity problem, Mathematical and Computer Modelling, 2011,54: 2515-2527.   

[16] Jia Tang, Sanyang Liu, Changfeng Ma, A new C-function for symmetric cone   complementarity problems, Journal of Global Optimization, 2011, 51:105-113.  

[17] Xuebin Wang, Changfeng Ma, Meiyan Li, A globally and superlinearly convergent quasi-Newton method for general box constrained variational inequalities without smoothing approximation, Journal of Global Optimization, 2011,50:675-694.   

[18] Xuebin Wang, Changfeng Ma, Meiyan Li, A smoothing trust region method for NCPs based on the smoothing generalized Fischer-Burmeister function, Journal of Computational Mathematics, 2011,29:261-286.  

[19] Bilian Chen, Changfeng Ma, Superlinear/quadratic smoothing Broyden-like method for the generalized nonlinear complementarity problem, Nonlinear Analysis: Real World Applications, 2011,12:1250-1263.   

[20] Linjie Chen, Changfeng Ma, A modified smoothing and regularized   Newton   method for monotone second-order cone complementarity problems, Computers & Mathematics with Applications, 2011, 61: 1407- 1418.  

[21] Cangfeng Ma, A lattice BGK model for simulating solitary waves, International Journal of Modern Physics B, 2011,25(4) 589-597.   

[22] Linjie Chen, Changfeng Ma, Simulating of KdV-Burgers equation with lattice BGK model, International Journal of Modern Physics B, 2011, 25:433-440  

[23] Yajun Xie, Changfeng Ma, A smoothing Levenberg-Marquardt algorithm for solving a class of stochastic linear complementarity problem, Applied Mathematics and Computation, 2011, 217: 4459 -4472.   

[24] Changfeng Ma, A new smoothing and regularization   Newton   method for P0-NCP, Journal of Global Optimization, 2010, 48(2): 241-261.   

[25] Bilian Chen, Changfeng Ma, Some high order iterative methods for nonlinear equations based on the  modified homotopy perturbation methods, Asian-European Journal of Mathematics, 2010, 3(3):395-408.   

[26] Chan He, Changfeng Ma, A smoothing self-adaptive Levenberg–Marquardt algorithm for solving system of nonlinear inequalities, Applied Mathematics and Computation, 2010, 216:3056-3063.   

[27] Jia Tang, Changfeng Ma, Zhe Du, A predictor-corrector smoothing newton method for solving the mixed complementarity problem with a P0-function, International Journal of Computer Mathematics, 2010, 87(11): 2503–2519.   

[28] Huilin Lai, Changfeng Ma, The lattice Boltzmann model for the second-order Benjamin-Ono equations, Journal of Statistical Mechanics: Theory and Experiment, 2010,04, P04011.  

[29] Sanyang Liu, Jia Tang, Changfeng Ma, A new modified one-step smoothing Newton method for solving the general mixed complementarity problem, Applied Mathematics and Computation, 2010, 216:1140-1149.  

[30] Linjie Chen, Changfeng Ma, A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations, Chin. Phys. B, 2010, 191(1), 010504.  

[31] Huilin Lai, Changfeng Ma, A higher order lattice BGK model for simulating some nonlinear partial differential equations, Science in China Series G, 2009, 52(7):1053-1061.  

[32] Huilin Lai, Changfeng Ma, Lattice Boltzmann method for the generalized Kuramoto Sivashinsky equation, Physica A, 2009,388:1405-1412.  

[33] Changfeng MaLattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat sourceNonlinear Analysis: Real World Applications, 2009,10(5): 2666-2678.   

[34] Changfeng Ma, Desheng Wang and Yu Wang, The finite element analysis of a fractional-step method for the time-dependent linear elasticity equations. Nonlinear Analysis: Real World Applications, 2009,10:1210-1219.   

[35] Changfeng Ma, Lihua Jiang and Desheng Wang, The convergence of a smoothing damped Gauss-Newton method for nonlinear complementarity problem, Nonlinear Analysis: Real World Applications, 2009,10:2072-2087.  

[36] Xiaohong Chen, Changfeng Ma, A Regularization Smoothing Newton Method for Solving Nonlinear Complementarity Problem, Nonlinear Analysis: Real World Applications, 2009, 10:1702-1711.  

[37] Jia Tang, Sanyang Liu, Changfeng Ma, One-step smoothing Newton method for solving the mixed complementarity problem with a P0 function, Applied Mathematics and Computation, 2009, 215: 2326 -2336.  

指导研究生:  

l        硕士生  

2003级:石武军,唐菊珍。2004级:何郁波,田亚娟。2005级:龙君,唐嘉,陈小红。2006级:陈文平,陈碧连,赖惠林,林钊;钟志鹏,何婵。 2007级:陈林婕;王学斌,李梅艳,倪健。2008级:余芝云,董朝丽,潘少君;唐江花,刘宁,柴婧,丁小妹。2009级:张丽娜;2010级:范斌,刘景辉,禹德,吴超,尤鸿明。2011级:黄娜,何叶丹;2012级:卢怀泽,闫建瑞,郑青青,柯艺芬;2013级:陈彩荣。  

l        博士生

2012级:谢亚君;2013级:黄娜。