美国加州大学Riverside 教授关庄丹学术报告 7月24日下午
发布时间: 2019-07-23 访问次数: 13

报告题目【Non-existence of S^6 type of complex threefold in G2】

时间:2019年7月24日 (星期三)下午 15:00 

地点:旗山校区理工北楼601报告厅

主讲:美国加州大学Riverside 教授,关庄丹

主办:数学与信息学院, 福建省分析数学及应用重点实验室, 数学研究中心

参加对象:相关专业老师及学生


报告摘要:In this talk I will address some problems and developments with complex homogeneous spaces. In particular, we shall touch a recent problem of existing of sphere of six dimension type complex submanifolds in the 14 dimensional compact Lie group G2. The existence or non-existence of a complex structure on S6 has a unique history. There are attempts from some famous figures as the Professor C. C. Hsiong, the initiator of Journal of Differential Geometry; Professor S. S. Chern, a Wolf prize winner; and Professor M. Atiyah, a Fields and Abel prize winner. In 2015, Professor Etesi published a paper in J. Math. Physics constructing a complex structure on S6. While there is no uniform opinion from the math community, he posted a different proof in a new preprint claiming a construction of the same complex structure on a submanifold of G2 by the induced complex structure from a complex structure of G2. We prove that one can NOT get a complex structure on S6 in HIS way by applying results from compact complex homogeneous spaces.


报告人简介:关庄丹,美国加州大学Riverside 教授,主要研究领域为复几何与微分几何。关教授本科毕业于厦门大学,在中国科学院师从我国著名数学家钟家庆获得硕士学位,后赴美留学,师从著名微分几何学家 Kobayashi 和著名齐性空间专家 Dorfmeister,在加州大学伯克利分校获得博士学位.关教授曾在普林斯顿大学及加利福尼亚大学任教,曾在数学顶级国际期刊 Inventiones Mathematicae 发表论文,解决了困扰国际数学届多年的Todorov 假定,并在系列论文中彻底解决了余齐性一的 Kahler-Einstein 问题以及许多的复齐性空间的分类问题。